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Multi-modal data sets are growing rapidly in single cell genomics, as well as other fields in science 
and engineering. We introduce MultiMAP, an approach for dimensionality reduction and integration 
of multiple datasets. MultiMAP embeds multiple datasets into a shared space so as to preserve both 
the manifold structure of each dataset independently, in addition to the manifold structure in shared 
feature spaces. MultiMAP is based on the rich mathematical foundation of UMAP, generalizing it to 
the setting of more than one data manifold. MultiMAP can be used for visualization of multiple 
datasets as well as an integration approach that enables subsequent joint analyses. Compared to other 
integration for single cell data, MultiMAP is not restricted to a linear transformation, is extremely 
fast, and is able to leverage features that may not be present in all datasets. We apply MultiMAP to 
the integration of a variety of single-cell transcriptomics, chromatin accessibility, methylation, and 
spatial data, and show that it outperforms current approaches in run time, label transfer, and label 
consistency. On a newly generated single cell ATAC-seq and RNA-seq dataset of the human thymus, 
we use MultiMAP to integrate cells across pseudotime. This enables the study of chromatin 
accessibility and TF binding over the course of T cell differentiation. 
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Abstract 
In recent years, deep learning has revolutionized natural language processing (NLP), and is increasingly 

used to analyze biological sequences including DNA, RNA and proteins. While many deep learning 
architectures and techniques successful in NLP can be directly applied to biological sequences, there are also 
specificities in biological sequences that should be taken into account to adapt NLP techniques to that context. 
In this talk I will discuss several such specificities, including the fact that 1) biological sequences have no 
natural separation as a sequence of words, 2) a double-stranded DNA sequence can be represented by two 
reverse-complement sequences, and 3) a natural way to compare homologous biological sequences is to align 
them. In each case, I will show how the biological constraints can lead to specific models, and illustrate 
empirically the benefits of incorporating such prior knowledge on several tasks such as metagenomics read 
binning, protein-DNA binding prediction, or protein annotation. 
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The burden of mosquito-transmitted diseases such as malaria, dengue, West Nile virus, or Zika fever continue 
to increase globally, representing one of the most significant public health threats. The widespread intracellular 
bacterium Wolbachia, which can block the transmission of pathogens and manipulate the mosquito 
reproduction, represent one of the most promising tools to control the spread of diseases. However, our 
understanding of Wolbachia’s mobilome beyond its bacteriophages remains incomplete. We studied four 
wild Culex pipiens individuals captured in Southern France from a single collect, and generated an average 70 
million Illumina paired-end sequences from the ovaries of each individual through shotgun metagenomics. 
Using state-of-the-art assembly and binning strategies, we were able to reconstruct near-
complete Wolbachia genomes from each individual, along with their phage WO variants. While our 
pangenomic analysis suggested high level of genomic conservation across the bacterial part 
of Wolbachia chromosomes, there was notable variation between individual mosquitoes due to differences in 
prophage WO and other viral genes. In addition, we identified a putative plasmid that we named pWCP for 
plasmid of Wolbachia in Culex pipiens. We validated its presence using additional PCR, long-read 
sequencing, and screening of available metagenomes. These data open news windows for further genomic 
analyses and the potential genetic manipulation of a fastidious, widespread genus of obligate intracellular 
bacteria that is so far recalcitrant to genetic manipulation. 
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Proteins are the ubiquitous molecular agents that support all the reigns of life, from viruses and bacteria to 

plants, animals and humans. After millions of years of evolution, Nature has built a large catalog of proteins 
that transport molecules, convert chemical energy into mechanical work, catalyze chemical reactions, or 
defend against foreign or infectious agents (often using proteins themselves). We already massively rely on 
this catalog for applications in health, green chemistry, food and feed, bio/nanotechnologies and cosmetics for 
example. But this catalog remains too narrow to fulfill all our needs. 

In the line of directed evolution (2018 Chemistry Nobel price), computational protein design aims at 
providing original proteins with improved (or radically new) capacities, but without the restraints of 
experimental approaches. Indeed, with 20 natural amino acids, designing even a simple protein of 100 amino 
acids requires to find a suitable amino acid sequence in a huge space of 20100 possible sequences. A space from 
which only a minute fraction can be explored by experimental assays (usually far less than 109). 

 In this talk, I will present the seminal NP-hard “fixed backbone” computational protein design problem and 
how it can be solved using various algorithmic approaches [1], including quantum computers relying on 
adiabatic quantum annealing [2]. I will then present some of the many approaches that try to account for protein 
flexibility during design [3,4], with their associated limitations. This will be illustrated with associated 
experimentally tested designs in the health, environment and nanotechnology [5] domains. 
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Abstract 

Computational workflows capture precise descriptions of the steps and data dependencies needed to carry 
out computational data pipelines, analysis and simulations in many areas of Science, including the Life 
Sciences. The use of computational workflows to manage these multi-step computational processes has 
accelerated in the past few years driven by the need for scalable data processing, the exchange of processing 
know-how, and the desire for more reproducible (or at least transparent) and quality assured processing 
methods. The SARS-CoV-2 pandemic has significantly highlighted the value of workflows. 

This increased interest in workflows has been matched by the number of workflow management systems 
available to scientists (Galaxy, Snakemake, Nextflow and 270+ more) and the number of workflow services 
like registries and monitors. There is also recognition that workflows are first class, publishable Research 
Objects just as data are. They deserve their own FAIR (Findable, Accessible, Interoperable, Reusable) 
principles and services that cater for their dual roles as explicit method description and software method 
execution [1]. To promote long-term usability and uptake by the scientific community, workflows (as well as 
the tools that integrate them) should become FAIR+R(eproducible), and citable so that author’s credit is 
attributed fairly and accurately. 

The work on improving the FAIRness of workflows has already started and a whole ecosystem of tools, 
guidelines and best practices has been under development to reduce the time needed to adapt, reuse and extend 
existing scientific workflows. An example is the EOSC-Life Cluster of 13 European Biomedical Research 
Infrastructures which is developing a FAIR Workflow Collaboratory based on the ELIXIR Research 
Infrastructure for Life Science Data Tools ecosystem. While there are many tools for addressing different 
aspects of FAIR workflows, many challenges remain for describing, annotating, and exposing scientific 
workflows so that they can be found, understood and reused by other scientists.  

This keynote will explore the FAIR principles for computational workflows in the Life Science using the 
EOSC-Life Workflow Collaboratory as an example.  
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A large body of data strongly supports a crucial role for histone modifications in the regulation of gene 
expression [1,2], and highly predictive models have been developed that infer gene expression from histone 
modification levels [3.4]. An increasing number of cases, however, are being reported in which changes in 
gene expression occur without changes in histone modifications [5,6]. To provide a framework where to 
properly investigate these apparently contradictory observations, here we have generated gene expression 
profiles and maps of nine histone modifications at twelve time-points along a controlled cellular differentiation 
process: the induced transdifferentiation of human B-cells into macrophage, a process that occurs with massive 
transcriptomic changes.  

Analysis of these data reveals that the large steady-state associations between gene expression and 
chromatin marking previously reported are partially artifactual, and mainly arise from the constrained nature 
of the transcriptome and the epigenome. When measured over time, these correlations are globally weak and, 
remarkably, in the case of H3K9me3, run in the opposite direction that previously thought.  

We found that, in contrast to the histone code hypothesis, only a limited number of combinations of histone 
modifications are actually marking the genes, defining the major genic chromatin states in the human genome. 
Genes tend to remain in the same state throughout the entire transdifferentiation process, even those that change 
expression substantially. We have also observed substantial chromatin changes that are not necessarily 
accompanied by changes in gene expression, suggesting that epigenetic modifications contribute to cell state 
in a manner that cannot be fully recapitulated by gene expression.  

We did find, however, a strong association between chromatin marking and expression at the time of initial 
gene activation. We have been able to determine the precise order of histone modifications at that time, and 
found that only H3K4me1 and H3K4me2 appear to be deposited prior to gene activation. Further changes in 
gene expression, comparable or even stronger than those at gene activation, seem to be mostly uncoupled from 
changes in histone modifications 
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FOe[LbOe SURWeLQ VWUXcWXUaO aOLgQPeQW fRU QRQ WULYLaO cRPSaULVRQV
GabUieO CUeWiQ1,2, ChaUORWWe PeUiQ1,2, NicROaV ZiPPeUPaQQ1,2,

TaWiaQa GaORchkiQa1,2, JeaQ-ChUiVWRShe GeOO\1,2

1 UQLYHUVLWp GH PaULV, IQVHUP UMR_S 1134 BIGR, INTS, 6 UXH AOH[aQGUH CabaQHO, 75015
PaULV, FUaQFH

2 LabRUaWRLUH GµE[FHOOHQFH GR-E[, 75015 PaULV, FUaQFH

CRUUHVSRQGLQJ AXWKRU: JabULHO.FUHWLQ@X-SaULV.IU aQG
MHaQ-FKULVWRSKH.JHOO\@X-SaULV.IU

PUoWein VWUXcWXUe alignmenW iV one of Whe moVW baVic opeUaWionV foU Whe VWXd\ of pUoWein
VWUXcWXUeV. SWUXcWXUe alignmenW iV fXndamenWal Wo anal\]e and XndeUVWand eYolXWionaU\,
VWUXcWXUal and fXncWional mechaniVmV b\ highlighWing VimilaUiWieV WhaW e[iVW beWZeen
pUoWeinV. PUoWein VWUXcWXUe alignmenW iV claVVicall\ peUfoUmed b\ meWhodV baVed on Uigid
VXpeUpoViWion. HoZeYeU in Whe caVe of non-WUiYial VWUXcWXUal VimilaUiWieV, dXe Wo Whe
inheUenW fle[ibiliW\ of pUoWein VWUXcWXUeV oU Wo eYolXWionaU\ eYenWV diVUXpWing Whe
oUgani]aWion of Whe pUoWein aUchiWecWXUe, VWUXcWXUe alignmenW UemainV challenging foU
claVVical algoUiWhmV. We pUopoVe a neZ meWhod: ICARUS, baVed on a pUeliminaU\
paUWiWioning of pUoWein inWo VWUXcWXUal XniWV WhaW aUe VXbVeTXenWl\ iWeUaWiYel\ aligned Wo a
WaUgeW VWUXcWXUe. OXU meWhod oXWpeUfoUmV boWh claVVical and fle[ible VWUXcWXUal alignmenW
UefeUence meWhodV on difficXlW VWUXcWXUal alignmenW caVeV.

Ke\ZRUdV SWUXcWXUaO aOigQPeQW, fOe[ibiOiW\, SURWeiQ VWUXcWXUe, PURWeiQ UQiWV

1. IQWURdXcWLRQ
The cRPSaUiVRQ beWZeeQ WZR SURWeiQ VWUXcWXUeV iV XVefXO WR chaUacWeUi]e WheiU ViPiOaUiW\ aW aQ

aWRPic OeYeO iQ RUdeU WR highOighW ViPiOaUiWieV Rf VWUXcWXUe aQd fXQcWiRQ, eYROXWiRQaU\ OiQkV. AV Whe
VWUXcWXUe iV PRUe cRQVeUYed WhaQ Whe VeTXeQce [1], Whe aOigQPeQW Rf Whe VWUXcWXUeV Rf WZR diVWaQW
hRPRORgXeV aOORZV WR highOighW Whe PXWaWiRQ WROeUaQce Rf Whe fROdiQg bXW aOVR iWV fOe[ibOe aUeaV aV ZeOO
aV Whe SRViWiRQV Rf UeVidXeV iPSRUWaQW fRU WheiU fXQcWiRQ. MRUeRYeU, WheUe aUe PaQ\ SURWeiQ faPiOieV
ZiWh a VPaOO QXPbeU Rf fROdV [2±5]. ThXV, WheUe aUe PaQ\ eYROXWiRQaUiO\ XQUeOaWed bXW ViPiOaUO\
fROdiQg SURWeiQV: aQaORgXeV. The VWUXcWXUaO aOigQPeQW Rf WZR aQaORgXeV UeYeaOV QRW RQO\ Whe caSaciW\
Rf a SURWeiQ VeTXeQce WR fROd, bXW aOVR Whe SRViWiRQV Rf Whe UeVidXeV WhaW aUe fXQdaPeQWaO fRU iW [6].

ThXV, VWUXcWXUaO aOigQPeQW aOORZV VWXd\ Rf PaQ\ aVSecWV Rf SURWeiQV aQd WhiV iV Zh\ PaQ\ PeWhRdV
RffeU Whe SRVVibiOiW\ WR aXWRPaWicaOO\ VXSeUiPSRVe aQd deWeUPiQe eTXiYaOeQW SRViWiRQV Rf Whe WZR
VWUXcWXUeV [7]. The PaiQ PeWUicV XVed WR TXaQWif\ Whe diVWaQce beWZeeQ Whe WZR VWUXcWXUeV aUe Whe RRRW
MeaQ STXaUe DeYiaWiRQ (RMSD) aQd TePSOaWe MRdeOiQg VcRUe (TM-VcRUe) [8]. TM-VcRUe ZaV
deVigQed WR be PRUe PeaQiQgfXO WhaQ RMSD b\ beiQg iQdeSeQdeQW Rf SURWeiQ Vi]e aQd OeVV VeQViWiYe WR
OaUge ORcaO deYiaWiRQV WhaW VWURQgO\ SeQaOi]e RMSD aQd Pake iW OeVV UeOeYaQW fRU cRPSaUiQg WZR
VWUXcWXUeV.

The SURbOeP Rf VWUXcWXUaO aOigQPeQW iV WR VXSeUiPSRVe RSWiPaOO\ WZR SURWeiQ VWUXcWXUeV UeSUeVeQWed
b\ WheiU aWRPV WR PiQiPi]e diVWaQce beWZeeQ aOigQed SRViWiRQV. The PRVW XVed PeWhRdV aUe
CRPbiQaWRUiaO E[WeQViRQ (CE) [9, 10], aQd TM-aOigQ [11]. BRWh PeWhRdV aUe baVed RQ Uigid VeTXeQWiaO
aOigQPeQW. The SURbOePV cRQViVW Rf fiQdiQg Whe RSWiPaO URWaWiRQ aQd WUaQVOaWiRQ Rf RQe VWUXcWXUe WR
PiQiPi]e diVWaQceV beWZeeQ VXSeUSRVed VWUXcWXUeV aQd iW PRVWO\ UeOieV RQ OeaVW-VTXaUeV fiWWiQg
aOgRUiWhPV. HRZeYeU, WheUe aUe cRPSOe[ eYROXWiRQaU\ eYeQWV WhaW Pake hRPRORgRXV SURWeiQ VWUXcWXUeV
difficXOW WR aOigQ. TheVe iQcOXde a diffeUeQW QXPbeU Rf UeSeaWV Rf Whe VaPe VXbXQiW, ciUcXOaU
SeUPXWaWiRQ RU OaUge iQVeUWiRQV [12]. IQ addiWiRQ, Whe VaPe SURWeiQ Pa\ SRVVeVV a high degUee Rf
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fOe[ibiOiW\ aQd WhXV haYe VeYeUaO UeVROYed VWUXcWXUeV ZiWh a YaUieW\ Rf cRQfRUPaWiRQV. IQ RUdeU WR
highOighW Whe VWUXcWXUaO ViPiOaUiW\ iQ WheVe SaUWicXOaU caVeV, cOaVVicaO aOigQPeQW PeWhRdV aUe QRW
VXfficieQW; RQO\ fOe[ibOe VWUXcWXUaO aOigQPeQW PeWhRdV VXch aV FATCAT [13, 14] caQ highOighW WheVe
cRPSOe[ eYROXWiRQaU\ UeOaWiRQVhiSV. FATCAT iV Whe UefeUeQce PeWhRd fRU fOe[ibOe VWUXcWXUaO aOigQPeQW.
CRPSaUed WR RWheU PeWhRdV, iW iV aW OeaVW aV cRPSeWiWiYe iQ WeUPV Rf SeUfRUPaQce aQd haV becRPe de
facWo Whe aOgRUiWhP WR Zhich aOO RWheU PeWhRdV aUe cRPSaUed WR [15±17].

FATCAT, jXVW aV fRU Whe YaVW PajRUiW\ Rf fOe[ibOe PeWhRdV, UeOieV RQ Whe deWecWiRQ Rf "hiQge"
SRViWiRQV aURXQd Zhich Uigid VXbVeWV Rf Whe VWUXcWXUe WR be aOigQed RUieQW WhePVeOYeV UeOaWiYe WR each
RWheU iQ RUdeU WR achieYe Whe beVW SRVVibOe RYeUaOO aOigQPeQW. The fiUVW VWeS iQ FATCAT cRQViVWV iQ Whe
ideQWificaWiRQ Rf aOigQed fUagPeQW SaiUV (AFP) fURP Whe WZR SURWeiQV WR cRPSaUe. TZR fUagPeQWV Rf
fi[ed OeQgWh L (8 iQ Whe RUigiQaO SaSeU) fRUP aQ AFP if Whe RMSD YaOXe Rf Whe VXSeUSRVed fUagPeQWV
iV beORZ a giYeQ WhUeVhROd. IQ Whe VecRQd VWeS, FATCAT bXiOdV Whe gORbaO VWUXcWXUaO aOigQPeQW b\
cRPbiQiQg Whe VeTXeQWiaOO\ aOigQed AFPV b\ d\QaPic SURgUaPPiQg. The cRPbiQaWiRQ Rf diffeUeQW
cRQVecXWiYe AFPV iV deWeUPiQed b\ URWaWiRQV/WUaQVOaWiRQV beWZeeQ AFPV. The VcRUiQg fXQcWiRQ iV
PaiQO\ baVed RQ Whe aPSOiWXde Rf Whe URWaWiRQV/WUaQVOaWiRQV, Whe Vi]e aV ZeOO aV Whe RMSD YaOXeV Rf Whe
AFPV. DiffeUeQW SRVW-SURceVViQg VWeSV aUe WheQ SeUfRUPed WR RSWiPi]e Whe gORbaO aOigQPeQW.

HeUe, Ze SUeVeQW ICARUS, a QRQ VeTXeQWiaO fOe[ibOe aOigQPeQW PeWhRd WhaW XVeV Whe PURWeiQ
PeeOiQg aOgRUiWhP [18, 19] WR defiQe PURWeiQ UQiWV (PUV) aV iQdeSeQdeQW Uigid UegiRQV WR be aOigQed.

2. MaWeULaOV aQd MeWhRdV
The baVic SUiQciSOe Rf Whe ICARUS aOgRUiWhP iV baVed RQ iWeUaWiYe aOigQPeQWV Rf VPaOO

cRPSacW UegiRQV caOOed PURWeiQ UQiWV (PU). The fiUVW VWeS cRQViVWV Rf aSSO\iQg Whe PURWeiQ PeeOiQg
aOgRUiWhP RQ RQe SURWeiQ cRQVideUed aV Whe ³TXeU\´ fRU Whe ideQWificaWiRQ Rf Whe Uigid UegiRQV. TheQ
ICARUS bXiOdV a QXPbeU Rf iWeUaWiYe VWUXcWXUaO aOigQPeQWV beWZeeQ PURWeiQ UQiWV Rf Whe fiUVW SURWeiQ
aQd Whe VecRQd SURWeiQ (Whe ³WaUgeW´) Zhich UePaiQV XQaOWeUed.

UViQg RQe Rf Whe SURWeiQV aV Whe WaUgeW, PURWeiQ PeeOiQg iV aSSOied RQ Whe TXeU\ SURWeiQ iQ RUdeU
WR VXbdiYide iW iQWR PUV: cRPSacW fUagPeQWV ZiWh high deQViW\ Rf iQWeUQaO cRQWacWV aQd ORZ QXPbeU Rf
cRQWacWV beWZeeQ each RWheU. PURWeiQ PeeOiQg ZiOO VegPeQW Whe TXeU\ SURWeiQ iQWR eiWheU 4 RU 5
cRQVecXWiYe PUV RU 4 RU 5 PUV aWWached b\ QRQ-PU ³hiQge´ SRUWiRQV. TheQ, ICARUS SeUfRUPV
VXbVeTXeQW aOigQPeQWV Rf Whe ideQWified PUV RQe b\ RQe XViQg TM-aOigQ [11] RQWR Whe WaUgeW SURWeiQ.
AW each VWage Rf Whe SURceVV, Whe Qe[W PU iV aOigQed WR Whe SRUWiRQ Rf Whe SURWeiQ Zhich haV QRW \eW
beeQ aVVRciaWed ZiWh aQ\ SUeYiRXVO\ aOigQed PU. We e[SORUe aOO Whe SRVVibOe aOigQPeQW VWUaWegieV WhaW
caQ be RbWaiQed b\ chaQgiQg Whe RUdeU Rf PU aOigQPeQWV. ThiV VWUaWeg\ UeVXOWV iQ aQ e[haXVWiYe
WUee-Oike e[SORUaWiRQ iQ Zhich eYeU\ bUaQch UeSUeVeQWV aOO SRVVibOe VXcceVViYe aOigQPeQWV beWZeeQ Whe
4 RU 5 PUV aQd Whe WaUgeW. The aOgRUiWhP cRPSOe[iW\ iV WhXV O(n!) ZheUe n iV Whe QXPbeU Rf PUV. TR
RSWiPi]e Whe QXPbeU Rf caOcXOaWiRQV, Ze haYe OiPiWed Whe e[SORUaWiRQ Rf WUee bUaQcheV XViQg Whe
bUaQch-aQd-bRXQd aOgRUiWhP. IW dReV QRW UedXce cRPSOe[iW\ iQ Whe ZRUVW caVe, aQd iW iV iPSRVVibOe WR
accXUaWeO\ deWeUPiQe Whe effecW Rf Whe aOgRUiWhP iQ Whe aYeUage caVe. HRZeYeU, iQ SUacWice, iW VSeedV XS
Whe WUee VeaUch gUeaWO\.

CRQVideUiQg Whe TXeU\ SURWeiQ aV cRQVecXWiYe PUV eQVXUeV a PRUe fOe[ibOe UeSUeVeQWaWiRQ Rf
Whe VWUXcWXUe aQd aOORZV addUeVViQg SURbOePV Rf SURWeiQ fUagPeQW iQVeUWiRQV, ciUcXOaU SeUPXWaWiRQV RU
UeSeWiWiRQV aV PUV caQ be aOigQed WR aQ\ SRUWiRQ Rf Whe WaUgeW RQ Zhich QR PU ZaV aOigQed \eW. FiQaOO\,
ICARUS UeSeaWV Whe SURcedXUe afWeU VZiWchiQg WaUgeW aQd TXeU\ SURWeiQV. OQce aOO Whe iQWeUPediaWe
aOigQPeQWV aUe e[SORUed, Whe beVW gORbaO aOigQPeQW iV chRVeQ RQ Whe baViV Rf Whe TM-VcRUe [8] beWZeeQ
Whe QeZO\ fRUPed TXeU\ SURWeiQ aQd Whe WaUgeW, QRUPaOi]ed b\ Whe OeQgWh Rf Whe VPaOOeVW SURWeiQ.

3. ReVXOWV

The SURSRVed VWUaWeg\ haV beeQ WeVWed RQ Whe RIPC daWaVeW [7] Rf 40 SaiUV Rf ViPiOaU bXW cRPSOe[
VWUXcWXUeV WR aOigQ dXe WR QRQ-WUiYiaO eYROXWiRQaU\ UeOaWiRQVhiSV RU high fOe[ibiOiW\. The caVeV ideQWified
iQ WhiV daWabaVe aUe SURWeiQ SaiUV WhaW diYeUge dXe WR ReSeWiWiRQV, IQVeUWiRQV, PeUPXWaWiRQV,
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CRQfRUPaWiRQaO VaUiabiOiW\ (RIPC) aQd Pi[WXUeV Rf WheVe caVeV.

OXU UeVXOWV ZeUe cRPSaUed WR Whe UefeUeQce Uigid aOigQPeQW WRRO TM-aOigQ aQd WR Whe UefeUeQce
fOe[ibOe aOigQPeQW PeWhRd FATCAT [13, 14]. We XVed TM-VcRUe QRUPaOi]ed b\ Whe VhRUWeVW VeTXeQce
OeQgWh WR eYaOXaWe Whe ViPiOaUiW\ beWZeeQ WZR aOigQed VWUXcWXUeV. TM-VcRUe adRSWV YaOXeV beWZeeQ 0
aQd 1, ZheUe 1 PeaQV WhaW WZR VWUXcWXUeV aUe ideQWicaO. TZR VWUXcWXUeV aUe cRQVideUed WR VhaUe Whe
VaPe fROd if WheiU TM-VcRUe iV higheU WhaQ 0.5. AbRYe WhiV WhUeVhROd YaOXe, ViPiOaUiW\ iQcUeaVeV ZiWh
Whe iQcUeaVe Rf TM-VcRUe [8].

ICARUS cOeaUO\ RXWSeUfRUPV bRWh TM-aOigQ aQd FATCAT PeWhRdV RQ Whe RIPC daWaVeW (Tab. 1).
IQdeed, iQ aOO caVeV e[ceSW RQe, ICARUS RXWSeUfRUPV bRWh WRROV. ICARUS RbWaiQV aQ aYeUage
TM-VcRUe Rf 0.74, ZhiOe TM-aOigQ aQd FATCAT RbWaiQ 0.53 aQd 0.66 UeVSecWiYeO\. FATCAT RbWaiQV a
TM-VcRUe 0.04 higheU WhaQ ICARUS RQ RQO\ RQe caVe Rf CiUcXOaU SeUPXWaWiRQ aQd UeSeWiWiRQ (d1b5Wa_
YV d1k87a2) Rf Whe daWaVeW. ICARUS RXWSeUfRUPV FATCAT iQ 34 RXW Rf 40 caVeV ZiWh aQ aYeUage gaiQ
Rf TM-VcRUe Rf 0.08 (Fig. 1). The aYeUage diffeUeQce beWZeeQ ICARUS aQd FATCAT iV VWaWiVWicaOO\
VigQificaQW (P-YaOXe = 4 [ 10-6, WiOcR[RQ SaiUed VigQed-UaQk WeVW).

SWUXcWXUaO UeOaWLRQV W\SeV NXPbeU Rf
SURWeLQ SaLUV FATCAT TM-aOLgQ ICARUS

CRQfRUPaWiRQaO YaUiabiOiW\ 4 0.91 0.53 0.92
CiUcXOaU SeUPXWaWiRQ 4 0.59 0.57 0.77
CiUcXOaU SeUPXWaWiRQ aQd iQVeUWiRQ 5 0.55 0.37 0.64
IQVeUWiRQ 12 0.58 0.55 0.65
IQVeUWiRQ aQd cRQfRUPaWiRQaO YaUiabiOiW\ 6 0.57 0.50 0.67
IQVeUWiRQ aQd UeSeWiWiRQ 5 0.62 0.57 0.69
CiUcXOaU SeUPXWaWiRQ aQd cRQfRUPaWiRQaO YaUiabiOiW\ 2 0.62 0.59 0.72
CiUcXOaU SeUPXWaWiRQ aQd UeSeWiWiRQ 1 0.75 0.56 0.71
CRQfRUPaWiRQaO YaUiabiOiW\ aQd UeSeWiWiRQ 1 0.78 0.53 0.91
AYeUage 0.66 0.53 0.74

Tab. 1: PeUfRUPaQce iQ WeUPV Rf PeaQ YaOXeV Rf TM-VcRUe Rf FATCAT, TM-aOigQ aQd ICARUS fRU
diffeUeQW caWegRUieV Rf VWUXcWXUaO aQd eYROXWiRQaU\ eYeQWV fURP Whe RIPC daWaVeW (40 SURWeiQ SaiUV).

FLg. 1: CRPSaUiVRQ Rf ICARUS aQd FATCAT TM-VcRUeV RbWaiQed RQ aOO SaiU SURWeiQV Rf RIPC VeW.
DRWWed aQd daVhed diagRQaO OiQeV UeSUeVeQW diffeUeQceV Rf 0.05 aQd 0.1 Rf TM-VcRUe UeVSecWiYeO\.

ICARUS iV Whe RQO\ WRRO abOe WR deWecW VWUXcWXUaO ViPiOaUiW\ eYeQ fRU Whe SaUWicXOaUO\ cRPSOe[ WaUgeWV
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Rf Whe RIPC daWaVeW aQd WheiU aOigQPeQW VcRUe QeYeU feOO beORZ 0.5. We VhRZ aQ e[aPSOe Rf aQ RXWSXW
aOigQPeQW Rf ICARUS Rf dRPaiQV d1adO__ aQd d1PXS__ (a cRPSOe[ caVe Rf IQVeUWiRQ aQd
cRQfRUPaWiRQaO YaUiabiOiW\) iQ FigXUe 2. We RbVeUYe WhaW eYeQ YeU\ cRPSOe[ eYROXWiRQaU\ eYeQWV caQ
be VXcceVVfXOO\ ideQWified b\ ICARUS. IQdeed, aV VhRZQ iQ FigXUe 2.C4. ICARUS ZaV, fRU iQVWaQce,
abOe WR VXcceVVfXOO\ deWeUPiQe a fUagPeQW UeSUeVeQWed b\ Whe PU4, Zhich iV cRQVWUXcWed b\ PRYiQg Whe
TXeU\ SRViWiRQV 23-36 (heOi[) WR Whe eQd Rf Whe TXeU\ VeTXeQce, UeSUeVeQWiQg a beWa-cRiO-heOi[ SaWWeUQ,
ZheUeaV TM-aOigQ aQd FATCAT ZeUe XQabOe WR geW WhiV PXch fOe[ibiOiW\ WR gUaVS WhiV OaUge iQVeUWiRQ.

A
AOigQed PURWeiQ UQiWV:

PU 8   t7adluaCDAFVGTWKLVSSENfDD4mkE
aa�������������  a

Ta-ge/ t7m0+uaVEKINGEWHTIILASdgK-ekg

PU ;   t7adlua)MIISVNGDLVTIRSESTFKNTEISFRKRDGDggggggKLVVECVMK
aa�```  a������` `����   ����`` a�������a

Ta-ge/ t7m0+ua1ADKTEKggAGEYSVTYgDGFNTgggFTIPKTDYDNFLMAHLINEKD

PU :   t7adluaGVTSTRVYERAggVGVGFATRKVAGMAgggK
a��������a�  `�������������   `

Ta-ge/ t7m0+uaGETFQLMGLYGREPDLSSDIKERFAQLCEEH

PU 7   t7adlua1KSIITLDGGgggggALVQVQKWDGKSTTIK+
`a�a``��a     ����������������

Ta-ge/ t7m0+uafRLFLEQIHVLENSLVLKFHTVRDEECSELSm

PU 9   t7adluaKLGVEFDgeITADDRK
``  �`

Ta-ge/ t7m0+uagggggIED)GNggggg

B
FXOO aOigQPeQW:

PU.    t7adlua PU8 PU9 PU7
c*))ec/      a |gggggggggggggggggggg||gggggggggggggg||gggggggggggggggggggggggggggggg||gggggggggggggggggg
QUERY        a CDAFVGTWKLVSSENfDD4mkEKLGVEFDgeITADDRK1KSIITLDGGgggggALVQVQKWDGKSTTIK+)MIISVNGDLVTIRSESTF
ma/ch        a           aa�������������  a ``  �`      `a�a``��a     ����������������  aa�``` a������` `
Ta-ge/ t7m0+uaEEASSTGRNFNVEKINGEWHTIILASdgK-ekggggggIED)GNgggggfRLFLEQIHVLENSLVLKFHTVRDEECSELSm1ADKTEKggAGEYSVTYgD

PU.    t7adlua PU; PU:
c*))ec/      aggggggggggggggggggggggggggg||ggggggggggggggggggggggggggggg|
QUERY        aKNTEISFRKRDGDggggggKLVVECVMKGVTSTRVYERAggVGVGFATRKVAGMAgggK
ma/ch        a����   ����``      a�������aa��������a� `�������������   `
Ta-ge/ t7m0+uaGFNTgggFTIPKTDYDNFLMAHLINEKDGETFQLMGLYGREPDLSSDIKERFAQLCEEHGILRENIIDLSNANRC

FLg. 2: A aQd B. ICARUS RXWSXW aOigQPeQW fRU VXSeUSRViWiRQ Rf a cRPSOe[ caVe Rf IQVeUWiRQ aQd
cRQfRUPaWiRQaO YaUiabiOiW\ (d1adO__ YV. d1PXS__). MaWchiQg V\PbROV cRUUeVSRQd WR diVWaQceV (d) Rf
aOigQPeQW beWZeeQ TXeU\ aQd WaUgeW UeVidXeV: µ_¶ (d <= 1c), µ:¶ (d <= 2c), µ.¶ (d <= 4c) aQd µ ¶ (d >
4c). A. AOigQPeQW Rf iQdiYidXaO PURWeiQ UQiWV agaiQVW Whe PaWchiQg SRUWiRQV Rf Whe WaUgeW SURWeiQ. B.
FXOO aOigQPeQW Rf Whe TXeU\ agaiQVW Whe WaUgeW. MaWchiQg PUV aQd WheiU cRQQecWiRQV aUe aOVR
UeSUeVeQWed. C1. QXeU\ SURWeiQ d1adO__ fURP RIPC daWaVeW (\eOORZ). C2. TaUgeW SURWeiQ d1PXS__
fURP RIPC daWaVeW (gUe\). C3. OXWSXW aOigQPeQW Rf TM-aOigQ aQd FATCAT (ideQWicaO fRU bRWh WRROV).
The TXeU\ d1adO__ aQd Whe WaUgeW d1PXS__ aUe iQ \eOORZ aQd gUe\ UeVSecWiYeO\. C4. OXWSXW aOigQPeQW
Rf ICARUS. The WaUgeW d1PXS__ iV VhRZQ iQ gUe\, aQd Whe TXeU\ iV cRORXUed afWeU Whe cRUUeVSRQdiQg
PUV UeSUeVeQWed iQ A. aQd B.

4. CRQcOXVLRQ

IQ caVe Rf high cRQfRUPaWiRQaO YaUiabiOiW\, RU cRPSOe[ eYROXWiRQaU\ eYeQWV VXch aV iQVeUWiRQV,
ciUcXOaU SeUPXWaWiRQV RU UeSeWiWiRQV aOigQPeQW Rf SURWeiQ VWUXcWXUeV aUe chaOOeQgiQg. FRU WheVe cRPSOe[
caVeV, cOaVVicaO PeWhRdV aUe QRW efficieQW aQd Whe RQO\ Za\ WR VXSeUSRVe cRUUecWO\ WZR cRPSOe[
VWUXcWXUeV iV WR XVe fOe[ibOe aOigQPeQW PeWhRdV. We SUeVeQWed heUe Whe ICARUS aSSURach Zhich iV
baVed RQ Whe SaUWiWiRQiQg Rf SURWeiQ VWUXcWXUeV iQWR PURWeiQ UQiWV WR deWeUPiQe Whe Uigid UegiRQV Zhich
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aUe UeRUieQWed dXUiQg Whe aOigQPeQW SURcedXUe. OXU PeWhRd dePRQVWUaWeV e[ceOOeQW SeUfRUPaQce RQ
Whe RIPC daWaVeW ZiWh higheU PeaQ TM-VcRUeV RbWaiQed fRU 8/9 VWUXcWXUaO UeOaWiRQ caWegRUieV aV
cRPSaUed WR Whe FATCAT UefeUeQce PeWhRd. FiQaOO\, ICARUS highOighWV Whe VWUXcWXUaO ViPiOaUiW\ Rf
each SURWeiQ cRXSOe PRUe cOeaUO\ WhaQ FATCAT.

The efficieQc\ Rf Whe ICARUS aOgRUiWhP cRPeV bRWh fURP Whe defiQiWiRQ Rf Whe Uigid fUagPeQWV aV
PUV aQd fURP Whe Za\ PUV aUe aOigQed. IQ cRQWUaVW WR FATCAT, ICARUS dReV QRW keeS Whe VWUXcWXUe
VeTXeQWiaO, WhXV aOORZiQg Whe aOgRUiWhP WR deWecW ViPiOaUiWieV beWZeeQ SURWeiQ VWUXcWXUeV UeOaWed b\ VXch
cRPSOe[ eYROXWiRQaU\ eYeQWV aV SeUPXWaWiRQ aQd iQVeUWiRQ. MRUeRYeU, Whe XVe Rf PURWeiQ UQiWV fRU Whe
ideQWificaWiRQ Rf Uigid UegiRQV aQd hiQge SRViWiRQV iQ Whe SURWeiQ VWUXcWXUe cRQWUibXWeV VigQificaQWO\ WR
Whe aOgRUiWhP SeUfRUPaQce. PUV ZeUe SUeYiRXVO\ VhRZQ WR cRPSRVe Uigid aQd VWabOe VWUXcWXUaO XQiWV
[18±21]. IQ Whe cXUUeQW VWXd\, PUV aOORZ XV WR RbWaiQ high TXaOiW\ VWUXcWXUaO aOigQPeQWV fRU UeOaWed
SURWeiQV OiQked b\ cRPSOe[ eYROXWiRQaU\ eYeQWV cRUUeVSRQdiQg WR UeRUgaQi]aWiRQV/UeSeWiWiRQV/gURZWhV
Rf VWUXcWXUaO PRdXOeV Rf iQWeUPediaWe Vi]e. TheUefRUe, iW caQ be e[SecWed WhaW PUV SOa\ a UROe aV
eYROXWiRQaU\ aQd/RU VWUXcWXUaO PRdXOeV Oike VecRQdaU\ VWUXcWXUeV aQd dRPaiQV.

RefeUeQceV

1. IOOeUgnUd, K., AUdeOO, D.H., EORfVVRQ, A.: SWUXcWXUe iV WhUee WR WeQ WiPeV PRUe cRQVeUYed WhaQ VeTXeQce--a
VWXd\ Rf VWUXcWXUaO UeVSRQVe iQ SURWeiQ cRUeV. PURWeiQV. 77, 499±508 (2009)

2. WROf, Y.I., GUiVhiQ, N.V., KRRQiQ, E.V.: EVWiPaWiQg Whe QXPbeU Rf SURWeiQ fROdV aQd faPiOieV fURP cRPSOeWe
geQRPe daWa. J. MRO. BiRO. 299, 897±905 (2000)

3. CRXOVRQ, A.F.W., MRXOW, J.: A XQifROd, PeVRfROd, aQd VXSeUfROd PRdeO Rf SURWeiQ fROd XVe. PURWeiQV. 46,
61±71 (2002)

4. KRRQiQ, E.V., WROf, Y.I., KaUeY, G.P.: The VWUXcWXUe Rf Whe SURWeiQ XQiYeUVe aQd geQRPe eYROXWiRQ. NaWXUe.
420, 218±223 (2002)

5. LeRQRY, H., MiWcheOO, J.S.B., AUkiQ, I.T.: MRQWe CaUOR eVWiPaWiRQ Rf Whe QXPbeU Rf SRVVibOe SURWeiQ fROdV:
effecWV Rf VaPSOiQg biaV aQd fROdV diVWUibXWiRQV. PURWeiQV. 51, 352±359 (2003)

6. SieUk, M.L., KOe\ZegW, G.J.: Dpjj YX aOO RYeU agaiQ: fiQdiQg aQd aQaO\]iQg SURWeiQ VWUXcWXUe ViPiOaUiWieV.
SWUXcWXUe. 12, 2103±2111 (2004)

7. Ma\U, G., DRPiQgXeV, F.S., LackQeU, P.: CRPSaUaWiYe aQaO\ViV Rf SURWeiQ VWUXcWXUe aOigQPeQWV. BMC SWUXcW.
BiRO. 7, 50 (2007)

8. XX, J., ZhaQg, Y.: HRZ VigQificaQW iV a SURWeiQ VWUXcWXUe ViPiOaUiW\ ZiWh TM-VcRUe = 0.5? BiRiQfRUPaWicV.
26, 889±895 (2010)

9. ShiQd\aORY, I.N., BRXUQe, P.E.: PURWeiQ VWUXcWXUe aOigQPeQW b\ iQcUePeQWaO cRPbiQaWRUiaO e[WeQViRQ (CE) Rf
Whe RSWiPaO SaWh. PURWeiQ EQg. 11, 739±747 (1998)

10. HROP, L.: DALI aQd Whe SeUViVWeQce Rf SURWeiQ VhaSe. PURWeiQ Sci. 29, 128±140 (2020)
11. ZhaQg, Y., SkROQick, J.: TM-aOigQ: a SURWeiQ VWUXcWXUe aOigQPeQW aOgRUiWhP baVed RQ Whe TM-VcRUe. NXcOeic

AcidV ReV. 33, 2302±2309 (2005)
12. GUiVhiQ, N.V.: FROd chaQge iQ eYROXWiRQ Rf SURWeiQ VWUXcWXUeV. J. SWUXcW. BiRO. 134, 167±185 (2001)
13. Ye, Y., GRd]ik, A.: FOe[ibOe VWUXcWXUe aOigQPeQW b\ chaiQiQg aOigQed fUagPeQW SaiUV aOORZiQg WZiVWV.

BiRiQfRUPaWicV. 19 SXSSO 2, ii246±55 (2003)
14. Li, Z., JaURV]eZVki, L., I\eU, M., SedRYa, M., GRd]ik, A.: FATCAT 2.0: WRZaUdV a beWWeU XQdeUVWaQdiQg Rf

Whe VWUXcWXUaO diYeUViW\ Rf SURWeiQV. NXcOeic AcidV ReV. 48, W60±W64 (2020)
15. SaOeP, S., Zaki, M.J., B\VWURff, C.: FOe[SQaS: FOe[ibOe NRQ-VeTXeQWiaO PURWeiQ SWUXcWXUe AOigQPeQW,

hWWS://d[.dRi.RUg/10.1186/1748-7188-5-12, (2010)
16. DaQiOXk, P., LeV\Qg, B.: A QRYeO PeWhRd WR cRPSaUe SURWeiQ VWUXcWXUeV XViQg ORcaO deVcUiSWRUV,

hWWS://d[.dRi.RUg/10.1186/1471-2105-12-344, (2011)
17. TeUaVhi, G., Takeda-ShiWaka, M.: CAB-AOigQ: A FOe[ibOe PURWeiQ SWUXcWXUe AOigQPeQW MeWhRd BaVed RQ Whe

ReVidXe-ReVidXe CRQWacW AUea. PLRS OQe. 10, e0141440 (2015)
18. GeOO\, J.-C., de BUeYeUQ, A.G., Ha]RXW, S.: ³PURWeiQ PeeOiQg´: aQ aSSURach fRU VSOiWWiQg a 3D SURWeiQ

VWUXcWXUe iQWR cRPSacW fUagPeQWV. BiRiQfRUPaWicV. 22, 129±133 (2006)
19. GeOO\, J.-C., EWchebeVW, C., Ha]RXW, S., de BUeYeUQ, A.G.: PURWeiQ PeeOiQg 2: a Zeb VeUYeU WR cRQYeUW SURWeiQ

VWUXcWXUeV iQWR VeUieV Rf SURWeiQ XQiWV. NXcOeic AcidV ReV. 34, W75±8 (2006)
20. GeOO\, J.-C., de BUeYeUQ, A.G.: PURWeiQ PeeOiQg 3D: QeZ WRROV fRU aQaO\]iQg SURWeiQ VWUXcWXUeV.

BiRiQfRUPaWicV. 27, 132±133 (2011)
21. PRVWic, G., GhRX]aP, Y., ChebUek, R., GeOO\, J.-C.: AQ aPbigXiW\ SUiQciSOe fRU aVVigQiQg SURWeiQ VWUXcWXUaO

dRPaiQV. Sci AdY. 3, e1600552 (2017)

Structural Bioinformatics I - abstract 1

-13-

https://paperpile.com/c/KXzJDH/vXSF+x1pE+yt9j+kUJ1
http://paperpile.com/b/KXzJDH/ONI4
http://paperpile.com/b/KXzJDH/ONI4
http://paperpile.com/b/KXzJDH/nyOL
http://paperpile.com/b/KXzJDH/nyOL
http://paperpile.com/b/KXzJDH/VmOH
http://paperpile.com/b/KXzJDH/VmOH
http://paperpile.com/b/KXzJDH/LqpO
http://paperpile.com/b/KXzJDH/LqpO
http://paperpile.com/b/KXzJDH/lph1
http://paperpile.com/b/KXzJDH/lph1
http://paperpile.com/b/KXzJDH/zaMC
http://paperpile.com/b/KXzJDH/zaMC
http://paperpile.com/b/KXzJDH/5GNd
http://paperpile.com/b/KXzJDH/5GNd
http://paperpile.com/b/KXzJDH/INK9
http://paperpile.com/b/KXzJDH/INK9
http://paperpile.com/b/KXzJDH/7ygb
http://paperpile.com/b/KXzJDH/7ygb
http://paperpile.com/b/KXzJDH/81Wt
http://paperpile.com/b/KXzJDH/3Wx3
http://paperpile.com/b/KXzJDH/3Wx3
http://paperpile.com/b/KXzJDH/n2L3
http://paperpile.com/b/KXzJDH/nhOu
http://paperpile.com/b/KXzJDH/nhOu
http://paperpile.com/b/KXzJDH/HHvD
http://paperpile.com/b/KXzJDH/HHvD
http://paperpile.com/b/KXzJDH/8Rhs
http://dx.doi.org/10.1186/1748-7188-5-12,
http://paperpile.com/b/KXzJDH/8Rhs
http://paperpile.com/b/KXzJDH/9Tqh
http://dx.doi.org/10.1186/1471-2105-12-344,
http://paperpile.com/b/KXzJDH/9Tqh
http://paperpile.com/b/KXzJDH/wlvc
http://paperpile.com/b/KXzJDH/wlvc
http://paperpile.com/b/KXzJDH/vXSF
http://paperpile.com/b/KXzJDH/vXSF
http://paperpile.com/b/KXzJDH/x1pE
http://paperpile.com/b/KXzJDH/x1pE
http://paperpile.com/b/KXzJDH/yt9j
http://paperpile.com/b/KXzJDH/yt9j
http://paperpile.com/b/KXzJDH/kUJ1
http://paperpile.com/b/KXzJDH/kUJ1
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1 UQLYHUVLWp GH PaULV, IQVHUP UMR_S 1134 BIGR, INTS, 6 UXH AOH[aQGUH CabaQHO, 75015
PaULV, FUaQFH

2 LabRUaWRLUH GµE[FHOOHQFH GR-E[, 75015 PaULV, FUaQFH

CRUUHVSRQGLQJ AXWKRU: MHaQ-FKULVWRSKH.JHOO\@X-SaULV.IU aQG WaWLaQa.JaORFKNLQa@X-SaULV.IU

PaSeU ReIeUeQce: VaQdeU MeeUVcKe eW aO. (2021) MEDUSA: PUedLcWLRQ Rf PURWeLQ FOe[LbLOLW\ fURP SeTXeQce,
JRXUQaO Rf MROecXOaU bLRORg\, 2021, 166882. KWWSV://dRL.RUg/10.1016/M.MPb.2021.166882

1. IQWURdXcWLRQ
BLRORJLFDO IXQFWLRQ RI SURWHLQV LV GHWHUPLQHG E\ WKHLU VWUXFWXUH DQG G\QDPLFV. FRU WRGD\, H[SHULPHQWDO

GHWHUPLQDWLRQ RI WKH SURWHLQ G\QDPLFDO SURSHUWLHV UHPDLQV GLIILFXOW DQG FRVWO\. TKXV, GHYHORSPHQW RI
FRPSXWDWLRQDO SUHGLFWLRQ WRROV KDYH SRWHQWLDO WR SURYLGH LQIRUPDWLRQ RQ G\QDPLFV SURSHUWLHV IRU WKH SURWHLQV
ZLWKRXW UHVROYHG VWUXFWXUH. RHFHQW DGYDQFHV LQ WKH ILHOG RI DUWLILFLDO LQWHOOLJHQFH KDYH GHPRQVWUDWHG WKH
SRWHQWLDO RI PDFKLQH OHDUQLQJ IRU VWUXFWXUDO ELRLQIRUPDWLF SUREOHPV. IQ WKH FXUUHQW VWXG\ ZH GHYHORSHG D GHHS
OHDUQLQJ EDVHG SUHGLFWLRQ WRRO QDPHG MEDUSA IRU WKH SURWHLQ IOH[LELOLW\ SUHGLFWLRQ IURP DPLQR DFLG
VHTXHQFH.

2. MaWeULaOV aQd MeWKRdV
:H KDYH FRQVLGHUHG SURWHLQ IOH[LELOLW\ LQ WHUPV RI B-IDFWRU REWDLQHG LQ ;-UD\ FU\VWDOORJUDSK\. B-IDFWRU

UHIOHFWV WKH DWWHQXDWLRQ RI ;-UD\ VFDWWHULQJ FDXVHG E\ WKHUPDO PRWLRQ DQG LV WKH PRVW FRPPRQ H[SHULPHQWDO
GHVFULSWRU RI SURWHLQ IOH[LELOLW\. :H KDYH GHYHORSHG IRXU FODVVLILFDWLRQ PRGHOV SUHGLFWLQJ WKH GHJUHH RI WKH
H[SHFWHG SURWHLQ IOH[LELOLW\ LQ WZR, WKUHH DQG ILYH FODVVHV. TKH DOJRULWKP XVHV HYROXWLRQDU\ LQIRUPDWLRQ
H[WUDFWHG IURP KRPRORJRXV SURWHLQ VHTXHQFHV FRPELQHG ZLWK DPLQR DFLG SK\VLFR-FKHPLFDO SURSHUWLHV DV
LQSXW IRU D FRQYROXWLRQDO QHXUDO QHWZRUN IRU IOH[LELOLW\ FODVV SUHGLFWLRQ DW HDFK SURWHLQ VHTXHQFH SRVLWLRQ.
PUHGLFWLRQV DUH UDWHG E\ D FRQILGHQFH LQGH[ EDVHG RQ WKH QHWZRUN RXWSXW SUREDELOLW\. TKH SHUIRUPDQFH RI RXU
PRGHO ZDV HVWLPDWHG LQ 10-IROG FURVV YDOLGDWLRQ RQ D GDWDVHW ILOWHUHG E\ VWUXFWXUDO VLPLODULW\ WR HQVXUH
LQGHSHQGHQFH EHWZHHQ WUDLQ DQG WHVW GDWDVHWV.

3. ReVXOWV aQd cRQcOXVLRQ
MEDUSA LV DYDLODEOH DV D ZHE VHUYHU

(KWWSV://ZZZ.GVLPE.LQVHUP.IU/MEDUSA) DV ZHOO DV D VWDQGDORQH
XWLOLW\ (KWWSV://JLWKXE.FRP/DSIMB/PHGXVD). MEDUSA RXWSHUIRUPV
WKH VWDWH-RI-WKH-DUW PHWKRG PROFEYDO >1@ IRU WKH ELQDU\ SUHGLFWLRQ
SUREOHP. AV ZH GHPRQVWUDWH LQ PXOWLSOH ELRORJLFDO H[DPSOHV,
MEDUSA SUHGLFWLRQV VXFFHVVIXOO\ LGHQWLI\ WKH SRWHQWLDOO\ KLJKO\
GHIRUPDEOH SURWHLQ UHJLRQV IRU WKH SURWHLQV ZLWK NQRZQ G\QDPLFDO
SURSHUWLHV (WKH H[DPSOH RI SUHGLFWLRQV IRU WKH FDOPRGXOLQ PROHFXOH
LV VKRZQ LQ WKH ILJXUH IURP 9DQGHU MHHUVFKH HW DO. 2021).
MRUHRYHU, MEDUSA SURYLGHV LQIRUPDWLRQ RQ WKH SUHVHQFH RI WKH
ORFDOO\ ULJLG IUDJPHQWV IRU WKH SURWHLQV ZLWKRXW VWDEOH IROG DQG WKXV
FRPSOHPHQWV WKH LQIRUPDWLRQ SURYLGHG E\ WKH GLVRUGHU SUHGLFWLRQ
WRROV. FLQDOO\, ZH DVVHVV WKH LPSDFW RI WKH TXDOLW\ RI H[SHULPHQWDO GDWD RQ WKH SUHGLFWLYH PRGHO SHUIRUPDQFH
DQG SURYLGH SRVVLEOH VROXWLRQV WR RYHUFRPH WKH OLPLWDWLRQV RI WKH FKRVHQ GHVFULSWRUV.

RefeUeQceV
1. AYQHU SFKOHVVLQJHU, GX\ <DFKGDY DQG BXUNKDUG RRVW. PROFEYDO: SUHGLFW IOH[LEOH DQG ULJLG UHVLGXHV LQ SURWHLQV,

BioinfoUmaWicV, 22:7, SDJHV 891±893, 2006

Structural Bioinformatics I - abstract 2

-14-

mailto:jean-christophe.gelly@u-paris.fr
mailto:tatiana.galochkina@u-paris.fr
https://www.dsimb.inserm.fr/MEDUSA
https://github.com/DSIMB/medusa


A Graph-based Similarity Approach to Classify Recurrent Complex
Motifs from their Context in RNA Structures

Coline Gianfrotta1,2, Vladimir Reinharz3, Dominique Barth1 and Alain Denise2,4
1
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Introduction RNA molecules intervene, along with proteins, in all major cellular processes. An
RNA molecule is composed of a sequence of nucleotides (A, C, G, U) which folds in space into a three-
dimensional structure. The function of an RNA molecule is strongly related to its three-dimensional
structure. This structure is composed of a rigid skeleton, a set of canonical interactions called the
secondary structure. On top of the skeleton, the nucleotides form an intricate network of interactions
that are not captured by present thermodynamic models [1]. This network has been shown to be
composed of modular motifs, that are linked to function, and have been leveraged for better prediction
and design [2], [3]. A peculiar subclass of structural motifs are those connecting RNA regions far away
in the secondary structure. They are crucial to predict since they determine the global shape of the
molecule, therefore important for the function.

Method This article proposes to use an RNA graph similarity metric, based on the Maximum
Common Edge Subgraph (MCES) resolution problem [4], to compare structural contexts of this kind
of motifs, represented as subgraphs of RNA graphs. We define the structural context of a motif as
the set of canonical and non canonical interactions that appear at a distance k around the motif. We
rely on a new modeling by graphs of these contexts, at two di↵erent levels of granularity, and obtain
a classification of these graphs.

Results We explore the cases of three known motif families to validate our approach: the A-minor
motif, which is frequently found in RNA 3D structures and involved in crucial cellular mechanisms [5],
and two other 3D motifs from the database CaRNAval [6] (RIN 51 and 56). Those three motifs are
not predictable by current computational methods, to the best of our knowledge. On these examples,
the similarity in our new graph representation correlates with the geometric distance between the 3D
models, while reducing the computation time in relation to a classical graph representation. Further-
more the classification induced by this similarity metric segregates well the structural contexts of the
motifs. This study then shows that the structural context matters for those motifs that bind distant
regions of RNA, and could be leveraged for the prediction of their location.
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Abstract Structural  libraries  of  fragments  are  commonly  used  to  model  or  design  the  3D

structure  of  biomolecules  (drugs,  peptides,  nucleic  acids).  They  typically  approximate  all

possible local  conformations of these molecules within a given precision,  by a set  of  well-

chosen  representative  fragments.  Such  a  set  can  be  obtained  by  clustering  a  larger  set  of

fragments whose structures have been solved experimentally, using suitable clustering algorithm

and measure of dissimilarity between fragments. A commonly used measure of dissimilarity in

structural biology is the root mean square deviation (RMSD), whose exact computation requires

a pairwise structural alignment. But this alignment is highly time-consuming and not applicable

for a very large initial set of fragments.

We propose here an approach based on feature extraction to perform an effective clustering,

while avoiding a computationally expensive full pairwise alignment. Using as example poly-A

RNA fragments of 3 nucleotides (3-nt), we searched for internal coordinates whose differences

can best approximate the RMSD between two fragments without any superposition. We found

that the simple differences of internal distances and angles can provide a lower bound on the

RMSD, allowing us to filter out pairs of which the RMSD does not need to be computed. We

can then compute the exact values for only the small RMSDs, and use it to apply more effective

clustering methods.

We present this strategy and its application on 39431 RNA 3-nt, which could be approximated

by only 3258 representative prototypes with 1 Å accuracy.

Keywords Fragment-based modeling, Structural library, Clustering, RNA 3D structure.

1 Introduction

Fragment-based methods are commonly used for modeling flexible polymers (protein loops,  RNA...).

They can exploit  a  discrete  representation of  the local  conformations of  the molecule  in  the form of  a

structural library [1], which contains an ensemble of conformers for each type of fragment. As an example,

we use a library of trinucleotide (3-nt) conformations for fragment-based docking of ssRNA on proteins [2].

A straightforward approach to create structural libraries suitable for a given modeling task is to take all

existing experimental structures of similar targets,  extract all  their fragments, and  create a representative

subset,  by  means  of  clustering.  The  objective  is  then  to  have  as  few  prototypes  as  possible,  while

approximating the whole set with a given precision (governed by the application).

 One common clustering criterion for the building of structural libraries is the root mean square deviation

(RMSD),  whose  minimum  value  obtained after  structural  alignment  is  called  conformational  RMSD

(cRMSD) [3]. Using this cRMSD raises problems reporting to both statistics and computational complexity.

Indeed, there is no guarantee that the measure still exhibits all the properties of a metric, and its computation

for all pairs of fragments can be time-consuming. We previously addressed both problems by aligning all

fragments  on one of  them selected randomly before  computing the RMSD,  as an approximation of the

cRMSD.  But  the  resulting  values  are  larger  than  the  cRMSD,  with  the  consequence  that  too  many

clusters/prototypes are generated.

Our present contribution provides a solution to both problems, based on feature extraction. Those new

features,  which  do  not  require  any  structural  alignment  for  their  comparison,  can  be  seen  as  internal

coordinates. With these new descriptions at hand, we construct libraries of 3-nt prototypes such that every

conformation  is  at  most  at  1Å  of  a  prototype  (according  to  the  cRMSD).  Compared  to  the  previous
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algorithm, our new method basically decreases the number of prototypes, under an acceptable computing

time.

The problem is formalized in Section 2.  The original  contribution is  introduced in Section 3.  Finally

Section 4 is devoted to the comparative experiments.

2 Problem statement

Our data are fragments x which belong to a subset  of an Euclidean space ! ℝ3n, where n is the number of

atoms. Their dissimilarity is measured by means of the normalized ℓ2 distance (RMSD) computed after the

application of a structural alignment. It is thus given by the following formula:

 (x, x')  (∀ ∈ ℝ3n)
2
, d(x, x') =  

where Φ(x') in ℝ3n  is the image of x' by the alignment. We consider two instances of the function Φ :

• Φ` is associated with the one against all strategy (all fragments are aligned on one single fragment,

the reference fragment).

• Φ* is associated with the one against one strategy (the alignments are performed pairwise).

We assume that we are given m fragments xi. Their matrix of dissimilarities D = (di,j)1≤i,j≤m , given by di,j =

d(xi, xj), is used to produce the set of prototypes {x̄  } through clustering. Let d` and d* be respectively the

dissimilarity measures associated with Φ` and Φ*. The prototypes must satisfy the constraint:

∀ i, 1 ≤ i ≤ m,  � x̄  : d*(xi, x̄ ) ≤ threshold.

Given the fact that the constraints involve d*, using the matrix of dissimilarities associated with Φ`raises

an  obvious  difficulty.  If  we  focus  on  the  kind  of  libraries  we  are  especially  interested  in  (3-nt  RNA

conformations for fragment-based docking), then it appears that the values of the RMSD after alignement on

a reference (d`) and of the cRMSD (d*) can vary up to 7Å. Symmetrically, using the matrix associated with

Φ* restricts the choice of the clustering methods, since it is no longer a matrix of distance. Furthermore, the

computation of this second matrix is far more time consuming than the previous one, since its complexity is

quadratic in the number of fragments.

3 Methods

3.1 Representation in Cartesian and internal coordinates 

We extracted from  the Protein Data Bank  all  the overlapping 3-nt RNA fragments in all  structures of

RNA-protein complexes obtained by X-ray crystallography (with resolution < 3Å) or solution NMR, using

our in-house protNAff tool [https://github.com/isaureCdB/ProtNAff]. We then convert them into the coarse-

grain representation defined in ATTRACT, which replaces sets of 3-4 heavy atoms by one pseudo-atom,

resulting in 7 pseudo-atoms per purine nucleotide (Fig 1).

To define relevant internal coordinates, taking inspiration from existing methods [4, 5],  we selected and

computed 6 distances and 9 dihedral angles: 

• the 3 pairwise distances between bases, using for each base the pseudo-atom the farthest from the

backbone (GA4)

• the distance between 5’-GS2 (sugar) and 3’-GA4 (base)

• the distance between 5’-GA4 (base) and 3’-GS2 (sugar)

• the length of the backbone, from 5’-GP (phosphate) to 3’-GS1 (sugar)

• the 3 backbone angles between pseudo-atoms GP and GS1 of consecutive nucleotides

• the 3 μ angles between sugar and base of each nucleotide, using the pseudo-atoms GS1 – GS2 – GA1

– GA2.

• the 3 χ angles between the sugar-base axis GS2 – GA1 of two nucleotides.
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Fig 1. Selected internal coordinates: distances (left) and angles (right) on a trinucleotide in all-atoms (sticks) and

coarse-grained (beads) representations, with the name of the pseudo-atoms on the 3’ nucleotide.

3.2 Connection between internal coordinates and RMSD

We analysed  the  distribution  of  its  values  among  the  fragments,  and  evaluated  how to  connect  the

differences between two fragments measured either by the  cRMSD or by the difference in each internal

coordinate. We selected four times a random sample of 10 % of the full set of fragments, and computed for

all  pairs  of  fragment  (i)  the  pairwise  cRMSD  after  fitting,  (ii)  the  difference  between  each  internal

coordinate, and (iii) the sum of the differences over the internal either distances or angles. We selected, for

each of the 15 coordinates and 2 sums of coordinates, the threshold value above which all pairs of fragments

have a cRMSD above 1 Å. In practice, to make the filtering more stringent, we allowed 1 false negative per

1000 positives (meaning that 1/1000 pairs with cRMSD < 1 Å are above that threshold). We then computed

the 17 average threshold values over the 4 random samples.

We applied those thresholds on the full set of 39431 fragments. We computed all the internal coordinates

and their pairwise (sum of) differences, then selected the pairs with all 17 values below the corresponding

threshold. The pairwise alignment and computation of the cRMSD value were done only on that subset of

pairs. For all other pairs, the cRMSD was considered as above 1 Å.

3.3 Choice of clustering methods with the full RMSD matrix

Three clustering algorithms are described below, that are compatible with our dissimilarity matrix. One

fast clustering using only a subset of approximate RMSD values was applied on the full set of fragments.

The two others use the full pairwise cRMSD matrix and were applied and compared in 2 cases: First, on the

prototypes obtained by fast clustering with approximate RMSD values, in order to evaluate the potential gain

in the number of clusters by using more effective clustering algorithms on cRMSD values.  Second,  we

applied them on the full set of fragments, using the RMSD matrix obtained after filtering by differences of

internal coordinates.

Fast Clustering with approximate RMSD

We first align each fragment on one fragment randomly chosen. All pairwise structural alignments in this

study are done with the Kabsch algorithm, using the fit.py protocol of ATTRACT. We then use the fastcluster

protocol  from  ATTRACT,  whose algorithm  goes  as  follows  :  Initialization  is  performed  by  randomly

choosing (using a uniform law) a fragment as the 1st cluster prototype. Then, for each fragment is measured

the distance to each of the prototypes in the current set after alignment. If one of these distances is less than

the chosen threshold,  then the fragment  is  assigned to that  cluster.  Otherwise,  it  is  added to the set  of

prototypes.

Hierarchical agglomerative clustering (HAC)

This type of clustering is a “bottom-up” approach. At the start, each fragment is a prototype, then the two

closest clusters (depending on the chosen linkage) are agglomerated, and this is iterated until reaching the

linkage threshold, resulting in a hierarchy of clusters. The number of clusters obtained by the method is

dependent on the threshold applied on the linkage. We applied it with a complete linkage of 1 Å, meaning

that two clusters are agglomerated if the maximum distance between two members from each cluster is
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below 1 Å.  We used the  Agglomerative Clustering function of  the sklearn  python module.  Finally,  the

prototype for each cluster can be chosen as the averaged conformation from all members.

Star-shape clustering

We also applied a star-shape clustering algorithm, creating clusters with all distances of each member to a

central element below a given threshold. We first select the fragment with the highest number of connected

fragments (with RMSD below the threshold), assign this fragment and its connections to the first cluster and

remove them from the pool, then repeat. If several fragments have the maximal number of neighbors, one of

them is picked randomly. Given this stochastic aspect, the clustering was run three times on the full set of

fragments, and the cluster set with smallest cardinality was kept.

4 Results

4.1 Re-clustering of prototypes with cRMSD values

By re-clustering the 4771 AAA prototypes with the pairwise cRMSD values using  HAC, we obtained

3307 new clusters: The current fast clustering method with approximated RMSD is indeed non optimal, and

the number of clusters can be reduced by at least 30% with more accurate methods. We also tested to apply a

star-shape clustering method, and obtained 3248 clusters. As the number of clusters obtained by both re-

clustering methods is quite similar, we decided to test both on the full set of fragments, after filtering by

internal coordinates.

4.2 Connection between internal coordinates and RMSD

We computed all 15 internal coordinates in the full set of fragments, and plotted their distributions (Fig 2).

Among distances, the base-base distance show a large variance, while the 3’-sugar – 5’-base distance is more

conserved  among  fragments.  Among  angles,  the  χ  angles  representing  the  relative  orientation  of  two

nucleotides show a large variance, while the μ angles between sugar and base of each nucleotide are much

more conserved.

Fig 2. Distribution of the selected internal coordinates among the 39431 fragments.
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We then analysed the link between the RMSD and the differences in internal coordinates for the 4 random

samples of fragments (see part 3.2). We looked at which conformations are closer than 1 Å cRMSD, and we

mostly found pairs below a certain difference threshold, for each internal coordinate (Fig 3). For differences

above this threshold, only 0.1% of the cRMSD values below 1 Å are found.

Fig 3. Correlation between pairwise RMSD and difference in some internal distances/angles.

Distances

base 1-2 base 2-3 base 1-3 sugar 1 – base 3 sugar 3 – base 1 bb sum

43 % 47 % 43 % 57 % 49 % 52 % 23 %

Angles

bb1 bb2 bb3 mu1-2 mu2-3 mu1-3 chi1 chi2 chi3 sum

76 % 67 % 70 % 49 % 52 % 45 % 80 % 77 % 89 % 28 %

Table 1. Percentage of pairs that are under the threshold holding 99.9% of the compatible pairs, for

each internal coordinate, in the 39431 fragments.

When looking at each individual threshold, the most efficient filtering is provided by the sum of distances,

the sum of angles and the base-base distances, while the χ angles give the least efficient filters.

4.3 Clustering with internal coordinates filters

We tested the combination of the 17 thresholds (see 3.2) on the four random samples. The real percentage

of cRMSD values under 1 Å is in range 8.6 - 9.7 % (average 9.2 %) in each sample, and is assumed to be in

the same range for the full set of fragments. We found that the proportion of pairs for which all values are

below the 17 thresholds is in range 14 - 16 % in the samples, meaning that we can reduce the number of pair
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alignments to only ~15 % of all pairs. Among the pairs kept, 54 - 62 % were real positives. This set of

thresholds was then applied to the full set of 39431 fragments. As expected, 15 % of the 1.6 x 10
9
 pairs were

identified  as  potentially  under  1  Å  cRMSD.  Those  were  selected  for  pairwise  alignment  and  RMSD

computation. For the other pairs, the cRMSD was considered as above 1 Å.

Using the pre-filtered full  RMSD matrix  resulted  in  3258 and 5483 clusters  with  the  star-shape and

agglomerative clustering algorithms respectively. The agglomerative clustering requires an upper bound on

the RMSD between members from two clusters to agglomerate them. This results in clique clusters, with all

members within 1 Å from each other. This is more stringent than our initial objective to have all members at

a maximal distance from the cluster center, and might explain the higher number of clusters obtained by

agglomerative versus star-shape clustering.

4.4 CPU times

To estimate the gain of pre-filtering with internal coordinates in terms of CPU time, we computed the full

c RMSD-matrix for the 4 samples, either with or without pre-filtering, on 1 CPU.  The computation of the

internal coordinates and of their pairwise differences takes less than 1’’. The cRMSD-matrix calculation for

4773 AAA fragments takes ~ 23' for all pairs, and < 5' for the pre-filtered pairs.

On the full set of fragments, the computation of the internal coordinates and of their pairwise differences

takes 2’’ and 4’ respectively. The clustering with the pre-filtered RMSD matrix takes ~1’ for agglomerative

clustering and ~ 45’ for star-shape clustering, each on 1 CPU.

5 Conclusion and future work

We showed that it is possible to overcome both the statistical and the computational problems associated

with clustering fragments based on their  cRMSD, by extracting features from the Cartesian coordinates.

Those internal coordinates are used to evaluate if a structural alignment is needed to calculate the cRMSD

between two fragments. Using this filter, the cRMSD matrix can be computed and used for new clustering

methods. While this paper presents an application on RNA trinucleotides, the approach can be extended to

different RNA structures, and different molecules such as peptides.

We are  now developing a  specific clustering method based on the hierarchical  clustering,  but  with a

different linkage. The idea is to calculate the smallest enclosing ball, containing the two linked clusters. Its

center is the prototype of the new cluster, whose RMSD after alignment to all other prototypes are computed.

The reduction of calculation time shown in this paper is a great help for this new method. 

To refine even more the fragment libraries, the use of other dissimilarities may be explored. The current

normalised ℓ2 distance takes into account deviations globally rather than locally. However, local deviations

might have a significant impact on the relevance of the RNA models created from the fragments. Other

dissimilarities measures (from mixed standards...) can take this constraint into account.
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1. AbVWUacW 
High-throughput technologies are constantly generating huge amounts of genomic sequences that 

represent an essential source of information for studying and understanding living organisms. However, 
without a crucial "annotation" step to add information, these raw sequences are difficult to exploit and 
sometimes even useless. One of the main challenges of annotation is to identify genes and characterize their 
internal structure in the genome[1]. In Eukaryotes, this step is very complex in particular for protein coding 
genes. Indeed, the architecture of these genes is organized in a mosaic of exons and introns[2]  delimited by 
boundaries called splice sites. There are two types of splice sites, the 5' (donor) and 3' (acceptor) sites, which 
are respectively the junction between exon-introns and intron-exons[3]. The splice sites are mainly 
characterized by the presence of GT (5') and AG (3') dinucleotides, embedded in a longer, more divergent 
pattern of about ten nucleotides. To help identify these sites, many prediction programs based on machine 
learning algorithms have been developed [4, 5]. Unfortunately, these programs are often dedicated to model 
organisms (e.g A. Thaliana, C. Elegans) or to human, and still generate too many annotation errors[6]  that 
can affect downstream studies. 

In this context, we have developed a new multi-species splice site prediction tool, based on the G3P0 
dataset [7]. G3PO was specifically established for our study, and special attention was paid to data quality, 
thanks to the implementation of a protocol based on multiple sequence alignments. G3PO contains more than 
147 organisms (ranging from humans to protists) and we exploited it to train a universal convolutional neural 
network called Spliceator [8] (http://www.lbgi.fr/spliceator). The latter has been trained with high quality data 
from G3PO which allows it to obtain high performances, with an accuracy of 95.3% for the Donor model and 
94.9% for the Acceptor model. Different evaluations have also been performed on independent benchmarks 
[9] of several organisms (human fish, fly, worm and plant) and Spliceator has obtained equivalent or even 
better performances than the current state of the art programs. 

References 
1. Salzberg SL. Next-generation genome annotation: we still struggle to get it right. Genome Biology. 2019;20:92. 
2. Mudge JM, Harrow J. The state of play in higher eukaryote gene annotation. Nat Rev Genet. 2016;17:758±72. 
3. Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15:108±21. 
4. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting Splicing from Primary Sequence 
with Deep Learning. Cell. 2019;176:535-548.e24. 
5. Wang R, Wang Z, Wang J, Li S. SpliceFinder: ab initio prediction of splice sites using convolutional neural network. BMC Bioinformatics. 
2019;20:652. 
6. Drăgan M-A, Moghul I, Priyam A, Bustos C, Wurm Y. GeneValidator: identify problems with protein-coding gene predictions. Bioinformatics. 
2016;32:1559±61. 
7. Scalzitti N, Jeannin-Girardon A, Collet P, Poch O, Thompson JD. A benchmark study of ab initio gene prediction methods in diverse eukaryotic 
organisms. BMC Genomics. 2020;21:293. 
8. Scalzitti N, Kress A, Orhand R, Weber T, Moulinier L, Jeannin-Girardon A, Collet P, Poch O, Thompson JD. Spliceator: multi-species splice site 
prediction using convolutional neural networks under revision (Under revision) 
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The advent of high-throughput sequencing methods has made it possible to study these Mendelian diseases 
at the highest resolution available, the nucleotide level. A patient's genome can now be fully sequenced in order 
to study its genetic variations1. However, the technical limitations today lie in the exploitation of the data 
produced, particularly due to its volume and complexity. 

Approximately five million single nucleotide variations (SNV)2 are present in each human genome resulting 
from both evolution and inter-individual diversity. Among these, 150,000 are found in the protein-coding 
regions, called exome, with an impact on gene products close to zero. Nevertheless, in rare cases, SNVs can 
lead to functional or structural modifications that result in Mendelian disease. 

To date, the most studied SNV is the class of missense variations. A missense corresponds to a SNV leading 
to a change of amino acid in the peptide sequence product during translation. Unlike most damaging classes, 
which can for example, result in a stop codon, missense SNVs are difficult to study due to their variable 
consequences. Out of the 150,000 SNVs present in each human exome, the number of missense variations is 
estimated to be around 1,500 and finding the causative variation for a rare disease in an exome study is like 
searching for a needle in a haystack. Prediction of the impact of a missense is currently based on multiple 
parameters: frequency in the general population (large genomic databases), conservation during evolution, 
physico-chemical properties of the reference and the new amino acid, location in the protein (domain). 

With the increase of computational power and emergence of artificial intelligence methods, different 
algorithms have been developed to help both researchers and physicians to find disease-causing variations in 
clinical studies. 

We present MISsense deleTeriousness predICtor (MISTIC), a new original prediction tool based on an 
original combination of two complementary machine-learning algorithms that integrates 115 features, ranging 
from multi-ethnic minor allele frequencies and evolutionary conservation, to physiochemical and biochemical 
properties of amino acids. Our approach also uses training sets with a wide spectrum of variant profiles, 
including both positive (deleterious) and negative (benign) variants. Compared to recent state-of-the-art 
ensemble prediction tools in various benchmark tests, MISTIC exhibits the best and most consistent 
performance, notably with the highest AUC value (0.95). Importantly, MISTIC maintains its high performance 
in the specific case of discriminating deleterious variants from rare benign variants (allele frequency <1%) or 
population-specific benign variants (no allele frequency). In a clinical usage context, MISTIC drastically 
reduces the list of candidate variants (<30%) and has a median ranking of the “causative” deleterious variants 
among the top 25 variants.Pages must NOT be numbered. Final pagination will be set by the editors of the 
proceedings. 

The list of references is headed References, it should be placed at the end of your contribution. It should be 
in Times New Roman 10-point font. Please do not insert a page break before the list of references. For citations 
in the text, please use square brackets [1] and consecutive ordered numbers [2,3] in list of references. Please 
find below examples on how to format references corresponding to articles [1], books [2], book chapters and 
proceedings [3]. 
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Abstract

Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium pro-
vided one of the most comprehensive maps of Transcription Start Sites (TSSs) in several species [1]
. Strikingly, 72% of them could not be assigned to a specific gene and initiate at unconventional
regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in
all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called Short
Tandem Repeats (STRs) [2]. To confirm this transcription, we develop Cap Trap RNA-seq, a technol-
ogy which combines cap trapping and long read MinION sequencing. We train sequence-based deep
learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the
importance of STR surrounding sequences not only to distinguish STR classes, but also to predict
the level of transcription initiation. Importantly, genetic variants linked to human diseases [3] are
preferentially found at STRs with high transcription initiation level, supporting the biological and
clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of
non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism.
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The anal\sis of Volatile Organic Compound (VOCs) in e[haled air is a promising non-inYasiYe method 
for earl\ diagnosis and therapeutic monitoring [1]. Proton Transfer Reaction Time-Of-Flight Mass 
Spectrometr\ (PTR-TOF-MS) has recentl\ emerged as an innoYatiYe technolog\ for the real time 
anal\sis of e[haled VOCs [2]. HoZeYer, there is currentl\ a lack of methods and softZare tools for the 
processing of such breath data from cohorts [3].  

We therefore deYeloped a suite of algorithms that process the raZ data and build the table of feature 
intensities in all samples, through e[piration and peak detection, quantification, alignment betZeen 
samples, missing Yalue imputation, feature annotation. Notabl\, Ze deYeloped an innoYatiYe 2D peak 
deconYolution method based on penali]ed splines signal regression, Zhich enables efficient denoising 
and estimation of the temporal eYolution, eYen in the case of peaks Zith close m/] Yalues. The methods 
Zere Yalidated on simulated, e[perimental (calibration gas containing specific VOCs in knoZn 
quantities), and clinical data. The softZare tool is publicl\ aYailable as the SWaiUMS R package on GitHub 
(and submitted to Bioconductor) and includes a graphical user interface for interactiYe Yisuali]ation and 
monitoring of the processing of cohort samples. 

We applied our methodolog\ to the characteri]ation of e[haled breath from mechanicall\ Yentilated 
adults Zith COVID-19 infection. Anal\]es of e[haled breath from 28 patients Zith COVID-19 ARDS 
and 12 patients Zith non-COVID-19 ARDS Zere performed dail\ from the hospital¶s entr\ to the 
discharge. First, using the closest aYailable acquisition to the hospital entr\, models predicting the 
infection status Zere deYeloped: a high accurac\ (93%) Zas obtained Zith all three machine learning 
approaches used (Random forest, Elastic Net and SVM). Second, the longitudinal eYolution of each 
VOC as a function of the hospitali]ation time Zas anal\]ed b\ mi[ed-effects modeling [4]. Splines 
function Zas used for the fi[ed effect (infection status), and an intercept per patient for the random 
effect. After feature ranking [5] and selection, four biomarkers of COVID-19 infection could be 
identified. Altogether, these results highlight the Yalue of the PTR-TOF-MS data and SWaiUMS softZare 
for the biomarker discoYer\ in e[haled breath. 
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Cell-to-cell communication is at the basis of the higher-order organization observed in tissues, organs, and 
organisms, at steady state and in response to stress. A sender cell can exchange information by either secreting 
small biological molecules such as cytokines or chemokines, or expressing surface markers on its membrane. 
These molecules, called ligands, can bind specific receptors in « target » cells, that will lead to pathway 
activation and specific target cell response. The availability of large-scale transcriptomic datasets from several 
cell types has opened the possibility of reconstructing cell-cell interactions based on co-expression of ligand-
receptor pairs. Several methods [1,2,3] have recently been publish to decipher cell communication, leading to 
interesting biological hypotheses. Still, important challenges remain, including the global integration of cell-
cell communication, biological interpretation, the inference of communication between cell types not 
necessarily represented in the same dataset. Thus, we developed ICELLNET, a transcriptomic-based 
framework to dissect cell communication in a global manner. It integrates: 1) a manually curated database of 
543 ligand-receptor interactions taking into account multiple subunits expression and that is exhaustive on 
cytokines, immune checkpoints and chemokines interactions with their respective receptors, 2) an R package 
to compute communication scores between cell types in a quantitative and global manner, 3) the possibility to 
connect multiple cell populations of interest with 31 reference human cell types [4], 4) the implementation of 
three visualization modes to facilitate biological interpretation. We have applied ICELLNET to dissect the 
communication of breast cancer-associated fibroblasts with other components of the tumor microenvironment 
revealing difference of communication channels used by CAF subsets. We also analyzed LPS-activated human 
dendritic cells (DC) communication and identified autocrine IL-10 as a key molecule controlling DC 
communication with up to 12 other cell types. Four of them are further tested and experimentally validated. 
Hence, ICELLNET is a global, versatile, biologically validated, and easy-to-use framework to dissect cell 
communication from individual or multiple cell-based transcriptomic profiles. 
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    The transcription and replication machineries share the same DNA template, which render head-on (HO) or 
co-directional (CD) collisions between them inevitable. HO collisions are considered as more deleterious to 
the genomic stability [1]. Moreover, transcription-replication conflicts (TRCs) can also be caused by the three-
stranded nucleic acid structures called R-loops, containing a RNA:DNA hybrid and a displaced DNA strand. 
R-loops are formed co-transcriptionally when the nascent RNA reanneals with the template DNA strand, 
leaving the non-coding strand unpaired. R-loops have been proposed to play both positive and negative roles 
in gene expression and other chromosome functions [1]. However, the mechanism by which R-loops interfere 
with fork progression and promote genomic instability in human cells remains poorly understood. 

In order to study the direction of replication fork movement and TRCs, we developed a R-based 
bioinformatics toolkit OKseqHMM, by using Hidden Markov Model (HMM) algorithm, to direct measure the 
replication fork directionality (RFD) as well as replication initiation and termination, along genomes obtained 
by sequencing of Okazaki fragments (OK-Seq) [2]. Furthermore, we have gathered and analyzed OK-seq data 
of different human and mouse cell types, to generate high-quality RFD profiles and initiation zones and 
termination zones (all tool and data are available at https://github.com/CL-CHEN-Lab/OK-Seq). By 
combining OK-seq with the mappings of RNA:DNA hybrids (DRIP-seq), replication protein A32 subunit 
phosphorylated on S33 (p-RPA), phosphorylation of histone variant H2AX on S139 (g-H2AX) and DNA 
double-strand breaks (DSBs, by i-BLESS; double strand Breaks Labelling, Enrichment on Streptavidin and 
next-generation Sequencing), we found that although R-loops are enriched at both transcription start site (TSS) 
and transcription termination site (TTS) of highly expressed genes, p-RPA was only detected at TTS, where 
forks mostly progress in a HO orientation relative to the direction of transcription. In topoisomerase I (TOP1)-
deficient cells, we also observed a broad g-H2AX signal at active genes and the presence of DSBs at TTS 
enriched in R-loops and p-RPA. Since p-RPA is a mark of ATM-Rad3-related (ATR) pathway activation at 
paused forks and g-H2AX is a mark of collapsed forks and DSBs, these data indicate that forks transiently 
pause at TTS but do not break, whereas prolonged fork pausing and DSBs occur in TOP1-deficient cells, 
presumably because of unresolved torsional stress. The impact of R-loops in this process was further confirmed 
by the overexpression of RNase H1, which partially alleviated replication stress in TOP1-deficient cells [3]. 

Altogether, these results provide a global picture of how the functional organization of the human genome 
limits the deleterious consequences of fork collisions with transcription and R-loops. In this model, the 
preferential co-directional orientation of replication and transcription at highly expressed genes and the 
controlled pausing of replication forks at TTS are both important to prevent HO collisions. The molecular 
mechanisms ensuring stable fork pausing and restart at TTS is currently unclear, but it may require a tight 
control of DNA torsional stress as it is perturbed in TOP1-deficient cells. The activation of the ATR pathway, 
may also actively slow down fork progression to prevent further head-on collisions and maintain genome 
integrity in TOP1-deficient cells [3]. 
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1. AbVWUacW 
The YeUVaWiliW\ and poZeU of ne[W-geneUaWion VeqXencing (NGS) applicaWionV make Whe VeqXencing 

Wechnolog\ a popXlaU Wool in biolog\ and medicine. YeW, Whe comple[iW\ Wo eYalXaWe daWa qXaliW\ leadV Wo non-
opWimal UeVXlWV. QXaliW\ conWUol (QC) of Whe daWa iV of cUXcial impoUWance Wo filWeU oXW loZ-qXaliW\ daWa fileV WhaW 
ZoXld haYe a negaWiYe impacW on doZnVWUeam anal\VeV. In a clinical conWe[W, paWienW daWa of XnnoWiced loZ-
qXaliW\ can lead Wo ZUong diagnoViV oU ill-VXiWed WUeaWmenW. FilWeUing oXW oU ediWing a Vmall poUWion of VeqXencing 
UeadV ZiWhin a file oU appl\ing moUe VophiVWicaWed biaV miWigaWion meWhodV ma\ be noW enoXgh oU deWUimenWal 
Wo Whe doZnVWUeam anal\ViV [1, 2]. Common QC WoolV anal\]e Whe daWa fileV Wo deUiYe nXmeUoXV highl\ Vpecific 
qXaliW\ feaWXUeV foU manXal UeYieZ. AV Whe XVefXlneVV of man\ feaWXUeV ZaV neYeU demonVWUaWed, a laUge 
majoUiW\ of NGS VcienWiVWV iV VWill noW confidenW aboXW claVVif\ing a VeqXencing file b\ qXaliW\. 

To addUeVV WhiV pUoblem, Ze haYe VWaWiVWicall\ chaUacWeUi]ed 47 common NGS qXaliW\ feaWXUeV and WeVWed 10 
claVVificaWion algoUiWhmV, inclXding WUee-baVed and deep leaUning algoUiWhmV. The WUaining VeW ZaV compoVed 
of 2642 hXman and moXVe fXncWional genomicV NGS fileV UelaWed Wo RNA-Veq, ChIP-Veq and DNaVe-Veq, 
Vingle- and paiU-ended, fUom Whe ENCODE daWabaVe (FaVWQ fileV: 5.6ௗTB). PUedicWiYe modelV ZeUe WXned b\ a 
compUehenViYe gUid VeaUch. In combinaWion ZiWh paUameWeU VeWWingV Vpecific Wo each algoUiWhm, a WoWal of 19,417 
diffeUenW modelV ZeUe WUained and eYalXaWed ZiWhin Whe gUid VeaUch foU each claVVificaWion caVe VXch aV hXman 
Vingle-end ChIP-Veq oU moXVe paiUed-end DNaVe-Veq. FXUWheUmoUe, foU each paUameWeU VeWWing, Ze applied 
WhUee diffeUenW feaWXUe VelecWion meWhodV pUioU Wo Whe claVVificaWion. E[WeUnal YalidaWionV ZeUe peUfoUmed on 
700 FaVWQ fileV fUom 38 daWaVeWV UefeUenced in Whe GEO oU CiVWUome daWabaVeV [3].  

ReVXlWV VhoZ WhaW NGS qXaliW\ feaWXUeV highl\ dependV on aVVa\V and e[peUimenWal condiWionV. We ZeUe 
able Wo bXild XnbiaVed opWimal modelV Wo accXUaWel\ pUedicW Whe qXaliW\ of NGS daWa fileV. TUee-baVed 
algoUiWhmV VXch aV Uandom foUeVW and gUadienW booVWing geneUaWed Whe moVW accXUaWe modelV dXUing Whe gUid 
VeaUch. A geneUic model WUained on daWa fUom an\ VpecieV and aVVa\ peUfoUmed VimilaUl\ Wo modelV Vpeciali]ed 
b\ VpecieV and aVVa\V dXUing inWeUnal WeVWV (aYeUage aUea XndeU ROC cXUYe = 0.925). GeneUali]aWion of WhiV 
geneUic model and Vome Vpeciali]ed modelV ZaV confiUmed ZiWh e[WeUnal daWa, inclXding ATAC-Veq daWa noW 
XVed foU WUaining. ReleYance of Whe modelV in clinical applicaWionV ZaV demonVWUaWed XVing 6 e[WeUnal daWaVeWV 
foU Zhich Whe aXWomaWic idenWificaWion and filWeUing of loZ-qXaliW\ VampleV UeVXlWed in impUoYed clXVWeUing of 
diVeaVe and conWUol VampleV, ZiWh poWenWial poViWiYe impacW Wo deUiYe maUkeU geneV and diVeaVe claVVifieUV. 
PUoYided Whe limiWed XVefXlneVV of pXblicl\ aYailable gXidelineV Wo caWegoUi]e daWa fileV ZiWh UeVpecW Wo qXaliW\, 
oXU deUiYed VWaWiVWical gXidelineV and pUedicWiYe modelV UepUeVenW a YalXable UeVoXUce foU XVeUV of NGS daWa Wo 
beWWeU XndeUVWand qXaliW\ iVVXeV and peUfoUm aXWomaWic qXaliW\ conWUol. We VWUongl\ encoXUage UeVeaUcheUV Wo 
VhaUe boWh high- and loZ-qXaliW\ daWa ZiWh Whe commXniW\. AYailabiliW\: hWWpV://giWhXb.com/ValbUec/VeqQVcoUeU. 
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1 Background

A current goal in medicine is to achieve precision and personalized medicine: the genetic, genomic, and

molecular information of each patient would be integrated to develop personalized diagnosis and treatment

[1]. This is particularly useful in cancer, where each individual tumor may be viewed as an independent

disease, with specific and variable responses to generic therapeutic treatments. Such challenging perspectives

will  be  only  possible  with the development  of  efficient  and robust  methodological  tools  that  allow the

identifications of deregulation patterns at the individual level.

Many statistical or bioinformatic methods do already exist to identify deregulated genes at the population

level, like DESeq2 [2] or edgeR [3]. Although very effective in detecting typical deregulation patterns, these

methods are not designed to provide precise information at the individual level and are usually very sensitive

to  batch  effects.  Few  promising  techniques  already  allow  to  extract  interpretable  information  from

personalized omics data [4], but they show very high false discovery rates or need matched samples.

2 The PenDA method

To overcome these limitations, we developed PenDA, for Personalized Differential Analysis, a  rank-

based method,  robust to  batch and normalization effects.  The  method works  in  two steps:  first  it  uses

information extracted from a reference dataset (e.g., control – non-tumorous – data) to determine a relative

ordering for each gene. Then, it uses this ordering to infer the deregulation status of genes in each individual

sample of interest (e.g., tumors samples).

Based on a realistic benchmark of simulated tumors, we demonstrated that PenDA reaches very high

efficiency in detecting sample-specific deregulated genes. We then applied the method to two large cohorts

associated with lung cancer. A detailed statistical analysis of the results allowed to isolate genes with specific

deregulation patterns, like genes that are up-regulated in all tumors or genes that are expressed but never

deregulated in any tumors. In particular, we were able to identified 37 new biomarkers associated to a bad

prognosis, that we validated on two independent cohorts.
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Essential thrombocythemia (ET) is a blood cancer belonging to the Myeloproliferative Neoplasms 
(MPNs) family. ET is characterized by an increase in the production of blood platelets. The high level of 
platelets associated with ET lead to complications such as thrombosis, clots (agglutination of platelets), 
which could partially or totally obstruct a blood vessel, or even haemorrhages. This disease is uncommon, 
with 2.3 cases per 100,000 people each year [1]. Several mutations are associated with ET. The calreticulin 
(CALR) gene corresponds to 25-30% of patients suffering from ET; it encodes an endoplasmic reticulum 
(ER)-localized molecular chaperone [2]. CALR protein ends with a highly flexible domain that (i) binds to a 
large proportion of Ca2+ of the ER and (ii) is ended by the ER retention peptide. A novel carboxyl-terminal 
sequence is generated by a frameshift mutation in CALR implied in ET (named CALR-ET), losing the ER 
retention peptide. CALR-ET therefore tends to go out of the ER. CALR-ETs mediate intermolecular 
interactions to form homodimers, bind MPL and activates it, leading to ET phenotype. 

The two most common CALR mutations are type 1 and type 2 mutations characterized by a 52 base pairs 
(bp) deletion (c.1099_1150del; p.Leu367fs*46) and a 5 bp insertion (c.1154_1155insTTGTC; 
p.Lys385fs*47), respectively. Other mutations are classified as type 1-like or type 2-like according to their 
impact on the carboxy-terminal sequence of the protein, the remaining are associated to the ‘other’ type. 
Type 1 mutations are more frequent, accounting for about 50% of CALR-mutated cases in ET, and are 
associated with a better prognosis. CALR type 1-like patients appear to have a more complex molecular 
landscape; the allele burden increase of CALR mutations is associated with disease progression. 

In this study, we have compiled variants taken from COSMIC database and literature leading to 155 
different variants. This large number of variants allowed redefining 5 new classes extending the 
classification of type 1-like and type 2-like to a finer description. These analyses showed that last class, 
named E, corresponding to more than 10% of CALR variants seemed not attached to ET. Similarly, the new 
class B takes only 2/3 of the variants formerly associated with type 2-like, which has a significant impact, 
this classification being used to follow the prognosis of patients. 

All the compiled and refined information had been included into a freely dedicated database CALR-ETdb 
(https://www.dsimb.inserm.fr/CALR-ET). It provides information for the variants with their general 
information (nucleic acid notation, protein, COSMIC code, type of mutation, type, class, category, ...). The 
structural information generated is also presented (prediction of the secondary structure, and 3D modeling), 
with the possibility of downloading the sequence in FASTA format and the 3D model in PDB format. The 
references of the variant are also indicated. The search for variants is possible by their COSMIC code, type 
of mutation, type, class or by nucleic or protein sequence. The class and type of the sequence are given in 
case no variant is found in our database. Statistical data describing the database is also available. They allow 
visualization of the specificities of the variants at the level of the protein or nucleotide sequence, or else 
according to their type or class. Database is updated as soon as a new sequence is detected. 

References 
1. Arie Regev, P Stark , Dorit Blickstein, Meir Lahav. Thrombotic complications in essential thrombocythemia with 

relatively low platelet counts. Am J Hematol, 56:168-172, 1997. 
2. Joan How, Gabriella S Hobb, Ann Mullally. Mutant calreticulin in myeloproliferative neoplasms. Blood, 134:2242-

2248, 2019. 

Databases & data visualisation - abstract 1

-33-



GenoVcapiVW: online e[ploUaWion of qXanWiWaWiYe pUofileV along genomeV Yia
inWeUacWiYel\ cXVWomi]ed gUaphical UepUeVenWaWionV

Sandra Dpro]ier1,2, Pierre Nicolas1, Ulrike Mlder3 and C\prien Guprin1

1 UQLYHUVLWp PaULV-SacOa\, INRAE, MaIAGE, 78350, JRX\-HQ-JRVaV, FUaQcH
2 UQLYHUVLWp PaULV-SacOa\, INRAE, BLRLQIOPLcV, MIGALE bLRLQIRUPaWLcV IacLOLW\, 78350,

JRX\-HQ-JRVaV, FUaQcH
3 IQWHUIacXOW\ IQVWLWXWH IRU GHQHWLcV aQG FXQcWLRQaO GHQRPLcV, UQLYHUVLW\ MHGLcLQH

GUHLIVZaOG, GHUPaQ\

CRUUHVSRQGLQJ AXWKRU: VaQGUa.GHUR]LHU@LQUaH.IU

PaSeU ReIeUeQce: DpUo]ieU eW aO. (2021) GenoVcapiVW: online e[ploUaWion of qXanWiWaWiYe pUofileV along genomeV
Yia inWeUacWiYel\ cXVWomi]ed gUaphical UepUeVenWaWionV, BioinfoUmaWicV, 2021.
hWWpV://doi.oUg/10.1093/bioinfoUmaWicV/bWab079

Anal\sis of quantitative genome-wide data, and particularl\ transcriptome data [1], allows to constantl\
improve structural and functional annotation of bacterial genomes. E[amination of non-aggregated
condition-dependent or strain-dependent transcription profiles along genomes is essential for delineation of
transcription units and characteri]ation of new genes such as antisense and other non-coding RNAs. Man\
genome browsers have been developed such as IGV [2] and JBrowse [3]. Some allow visuali]ation of
multiple profiles stacked on one track but do not combine interactive profile selection and colouring with the
eas\ access of an online tool, as useful to efficientl\ browse large sets of profiles.

Here we present Genoscapist that answers this specific need. To have ma[imum freedom for the
development and integration of graphical representation and browsing, we developed Genoscapist as an
independent application instead of a plugin to another pree[isting tool. Genoscapist runs on an Apache
webserver. It is written in HTML5/Javascript (client-side) and P\thon with Flask web framework
(server-side). Using AJAX reduces response time b\ minimi]ing data transfers, b\ sending simultaneous
server requests, and b\ taking advantage of the processing capabilit\ of the clients. The graphical rendering
follows the Scalable Vector Graphics (SVG) Web standard. Genome annotations and quantitative profiles are
stored in a PostgreSQL database.

Genoscapist views provide an integrated framework to interactivel\ e[plore datasets b\ navigating along
relationships in the e[pression space and along the genome sequence. To demonstrate its relevance, we
deplo\ed Genoscapist (http://genoscapist.migale.inrae.fr/) on data from transcriptome-based reannotation
studies of BacLOOXV VXbWLOLV [4] and SWaSh\ORcRccXV aXUeXV [5] since customi]able views of these
condition-dependent transcription profiles was a demand of the respective scientific communities. As
illustrated on these data sets, the tool provides an intuitive and powerful interface to select relevant profiles,
set their associated colors, change parameters of the graphical representation (]oom in/out, normali]ation
method of the profiles, displa\/hide gene names, «). A particular attention was paid to features directl\
useful for scientific communication : links can be obtained to share (or save) customi]ed views and e[ported
SVG files can serve as a basis to prepare high-qualit\ figures.
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Abstract Horizontal gene transfer (HGT) is the transfer of genes between species outside
the transmission from parent to o↵spring. Due to their impact on the genome and biology
of various species, HGTs have gained broader attention, but high-throughput methods to
robustly identify them are lacking. One rapid method to identify HGT candidates is to cal-
culate the di↵erence in similarity between the most similar gene in closely related species
and the most similar gene in distantly related species. Although metrics on similarity as-
sociated with taxonomic information can rapidly detect putative HGTs, these methods are
hampered by false positives that are di�cult to track. Furthermore, they do not inform
on the evolutionary trajectory and events such as duplications. Hence, phylogenetic anal-
ysis is necessary to confirm HGT candidates and provide a more comprehensive view of
their origin and evolutionary history. However, phylogenetic reconstruction requires sev-
eral time-consuming manual steps to retrieve the homologous sequences, produce a multiple
alignment, construct the phylogeny and analyze the topology to assess whether it supports
the HGT hypothesis. Here, we present AvP which automatically performs all these steps
and detects candidate HGTs within a phylogenetic framework.

Keywords bioinformatics, phylogenetics, horizontal gene transfer

1 Introduction

The acquisition of genes through horizontal gene transfer (HGT) is mostly observed in prokaryotes,
where they play a significant role in adaptation to new environments (e.g. antibiotic resistance). To a
lesser degree, cases of HGT have also been observed in eukaryotes with important consequences in the
biology of the organism [1]. The increase of new genomes being sequenced and the prediction of new
gene sets, represents an opportunity to detect additional HGT cases and to characterize more precisely
the possible donors. To sustain these needs, high-throughput yet robust HGT detection methods are
required.

One method to predict potential HGTs is to calculate the di↵erence in similarity using BLAST
[2] between closely related and distant species. The Alien Index (AI) metric uses the di↵erence in
e-value between the best hit from closely (ingroup) and distantly (donor) related taxa [3]. Positive AI
means that the gene is more similar to a distant taxon and indicates a potential HGT. In the past,
di↵erent values of AI have been used as a cuto↵ to decrease false positives but with the potential of
missing HGTs. Similarly, the HGT Index (h) [4] uses the di↵erence in bit scores but is hampered
by the same limitations in terms of a trade-o↵ between reducing false positives without missing valid
cases. Furthermore, tracking these false positives from homology search results alone is not possible.

Even if di↵erent cuto↵s are applied to AI, the underlying best BLAST hit analysis is an oversim-
plistic method for the evolutionary complexity of HGT. A more robust method is to extract the results
from the BLAST analysis and infer a phylogenetic tree. The phylogenetic position of the potential
HGT candidate in relation to the other genes and their taxonomy will provide an evolutionary frame-
work and will validate or reject the HGT hypothesis. However, manually producing then checking
each phylogenetic tree is a labour-intensive and time-consuming process. In addition, contamination
or symbionts in genome sequencing, unless handled properly, can provide false positives that pass both
AI and phylogenetic analysis [5]. External information, such as the target gene structure, taxonomic
a�liation of genes near the target gene, and support by transcription data are necessary to eliminate
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such false positives. Combining all information will lead to a more accurate prediction of putative
HGTs.

Methods exist to reconcile gene tree-species tree to detect xenologs (i.e HGTs) as well as dupli-
cation events and gene loss [6,7]. These methods are able to distinguish genes that were transferred
horizontaly with or without duplication events. To achieve this, a species tree together with the gene
tree is required. Therefore, testing hundred of genes produces an extra overhead of either creating
di↵erent species trees according to the input sequences or compare everything against the whole NCBI
tree of life wth hundreds of thousands of branches.

In this study, we present AvP (short for ‘Alienness vs Predictor’) to automate the robust iden-
tification of HGTs at high-throughput. AvP extracts all the information needed to produce input
files to perform phylogenetic reconstruction, evaluate HGTs from the phylogenetic trees, and com-
bine multiple other external information for additional support (e.g. g↵3 annotation file, transcript
quantification file). Our method does not rely on an explicit reference species tree and only uses a
simplified take on the species phylogeny, according to the organism tested. This allows for a rapid
phylogenetic detection of HGTs that can then be used as input for more sophisticated analyses.

2 Software description

AvP performs automatic detection of HGT candidates within a phylogenetic framework. The
pipeline comprises two major steps: (i) prepare, and (ii) detect, and three optional steps: (iii) classify,
(iv) evaluate, and (v) hgt local score (Fig. 1).

2.1 Input files

AvP requires three primary files, (i) a fasta file containing the proteins of the species being studied,
(ii) a tabular results file of similarity search (e.g. BLAST or DIAMOND [8]) against a protein database,
and (iii) an AI features file. Furthermore, the user must provide two config files, one with information
on the taxonomic ingroup in the study (defining which group of species is considered closely related
and which group is distantly related) and one defining multiple software parameters. If the database
is NR, the AI features file can be created with the Alienness webserver [9]. Using a di↵erent database
requires providing taxonomic information linked to the database with this step being detailed in the
software documentation. Then, the AI features file can be created with the script calculate ai.py which
can be found in the repository.

2.2 AvP prepare

The software collects all protein sequences corresponding to significant hits from the database
based on the tabular results file of the homology search and groups the query species sequences based
on the percentage of shared hits (by default 70%) using single linkage clustering. Alternatively, the
user can specify a file containing user-generated groups of queries and hits (e.g. from OrthoFinder
[10] or protein domain analysis). For each group, a fasta file is created containing the query species
sequences and their respective database hits. Each file is then aligned using MAFFT [11] with an
option for alignment trimming with trimAl [12].

2.3 AvP detect

There are two options available for phylogenetic inference within AvP : (i) FastTree [13], and (ii) IQ-
TREE [14]. The defaults for these programs are [-gamma -lg] for FastTree and [-mset WAG,LG,JTT
-AICc -mrate E,I,G,R] for IQ-TREE. The user can change the IQ-TREE parameters in the config file.
These two approaches vary in time and compute requirements, and consequently in tree reconstruction
accuracy [15]. Alternatively, the software can utilise user-generated phylogenetic trees using the
alignment files created with AvP prepare with any program that can produce a valid Newick tree
format file. By default, AvP does not take into account branch support values. However, the user can
define a support threshold in the config file under which branches collapse into polytomies.

Each phylogenetic tree is then processed (midpoint rooting) and each query sequence is classified
into one of the following three categories: HGT candidate (X), Complex topology (?), No evidence
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Fig. 1. AvP workflow. Dashed lines indicate optional routes and analyses.
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for HGT (X). The taxonomic assignment of genes and their position in the tree relative to the query
gene are used to characterise the gene as HGT or not. Two branches are taken into account, the
sister branch of the gene of interest and the ancestral sister branch (Fig. 2). Both of these branches
are tagged independently depending on the included sequences to either Donor (i.e distantly related
species), Ingroup (i.e closely related species), or both. Ingroup is defined by the user and Donor is
all not in Ingroup. The Ingroup tag is applied if most of the sequences (default 80%) belong to taxa
inside the taxonomic group closely related to the species studied. Consequently, the Donor tag is
applied if most of the sequences belong to taxa that fall outside of the Ingroup taxonomic clade. If
the branch contains taxa from both groups at a ratio higher than 1 to 5, then the branch is tagged
as both. The tags of these two branches are then processed according to Tab. 1. For example, if
we are searching in a eukaryotic species for HGT originating from prokaryotic species, the Ingroup is
set to Eukaryota and the Donor to non Eukaryota (bacteria, viruses etc). If the sister branch of the
query contains sequences that belong to eukaryotic species, it is tagged as Ingroup and the gene is not
considered as an HGT. In another example, if both the sister branch and the ancestral sister branch
contain sequences from non eukaryotic species, both of the branches are tagged as Donor ant the gene
is characterised as a potential HGT.

For each query sequence, the software produces a nexus formatted file containing the phylogenetic
tree, the taxonomic information for each sequence, and each sequence coloured by the taxonomic
a�liation for quick visual parsing. The nexus file can be visualised with the tree visualisation software
FigTree [16].

Protein of interest

Sister Branch

Ancestral

Rest

Sister Branch

Fig. 2. Sister branch positions on the phylogenetic tree.

Sister branch (SB)
Ancestral SB Donor Ingroup Donor + Ingroup
Donor X X ?
Ingroup ? X X
Donor + Ingroup ? X ?
Not present X X ?

Tab. 1. Detection table whether the gene tested is an HGT candidate (described in section AvP detect)

2.4 AvP classify

This step allows the further classification of HGT candidates into user-generated nested taxonomic
ranks for their putative origins. It follows the same logic as in the step AvP detect described previously
in terms of tagging the clades to a specific taxonomic a�liation. For example, the HGTs can be
classified based on their origin, such as Fungi, Viridiplantae, Viruses etc., according to the NCBI
taxonomy.

2.5 AvP evaluate

For each HGT candidate, the topology is constrained to form a single monophyletic group contain-
ing the query sequence and all the Ingroup sequences. A phylogenetic tree is inferred with FastTree or
IQ-TREE and the likelihoods of the initial and constrained topologies are compared with IQ-TREE,
which supports several tree topology tests. This step can inform whether the topology supporting
HGT is more likely than the alternative constrained topology that does not support HGT.
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2.6 AvP hgt local score

Given a g↵3 file containing the genomic location of the genes of the query species and the results
of the AvP analyses, this step calculates a score for each HGT candidate that corresponds to whether
the HGT candidate is surrounded by genes from the query genome or ’alien’ genes, including possible
contaminants. The score ranges between -1 and +1, with -1 indicating strongly a contamination while
+1 indicating strongly a HGT candidate (Fig. 3). The rationale is that a candidate HGT surrounded
by genes that were also detected as candidate HGT might be part of a contaminant insertion in the
genome assembly (although HGT of a whole block of genes or duplications after acquisition are also
possible). Hence, this step allows alerting the user on possible contaminations. On the opposite, if the
candidate HGT is surrounded by genes that were more likely inherited vertically, the contamination
hypothesis can be reasonably ruled out.

Gene of interest

Candidate HGT according to the AvP results

No evidence for HGT according to the AvP results or AI<0

Complex topology according to the AvP results

Gene with AI 0<AI<30

Unkown origin 

Gene classi�cationScore

-(1/(2*k))

(1/(2*k))

0

-(0.1/k)

(0.1/k)

k = number of nearby genes/2 (in the following example k=5)

(0.1) (0.1) (0.1) (0.1)(0) (0.02) (0.02) (0.02)(-0.02) (-0.1)+ + + + + + + + + = 0.34

Fig. 3. Calculation of the hgt local score based on nearby genes. Each neighbouring gene contributes to the
score based on its classification getting a value described in the top left panel. In the example, the score is equal
to 0.34, most likely indicating an HGT insertion. Overall, a score above 0 indicates an HGT insertion, while a
score below 0 indicates a possible contamination or HGT rich region.

3 Results

We tested our pipeline using the dataset for the tardigrade species Hypsibius dujardini [17]. We
used the database NCBI nr instead of SwissProt+TrEMBL libraries, used in the original publication,
and selected candidates with AI > 30 instead of hST > 30 (HGT Index), while the phylogenetic
inference was performed with FastTree instead of RAxML [18]. The final selection was 401 proteins
(386 genes) compared to 463 proteins (463 genes), and based on the phylogenetic trees, we detected a
total of 379 candidate HGTs (95%) instead of 357 (77%). Overall, 342 candidate HGTs were common
to AvP and the previously published analysis, the ones not identified by our pipeline having an AI
below 30. We then evaluated the candidate HGTs by comparing the likelihoods of the original HGT-
supporting trees to those of constrained trees in which tardigrade and other metazoan proteins were
forced to form a monophyletic group. Equally likely topologies were observed for 27 proteins bringing
the total number of strongly supported candidate HGTs to 352 ( 1.7% of the total proteins present
in the genome). To assess the e↵ect of using di↵erent databases, we performed two more searches
against SwissProt (SP) and Uniref90 (UR). A total of 196 / 333 / 401 proteins were selected when
using SP / UR / NR resulting in 127 / 292 / 352 candidate HGTs after alternative topology tests
(AvP evaluate). Hence, depending on the sampling of the sequence diversity present in the sequence
database, the number of detectable candidate HGT varies considerably.

In the publication describing Alien Index (AI) [3], the authors considered AI > 45 to be a good
indication of foreign origin while genes with 0 < AI < 45 were designated intermediate. However, this
AI threshold value was originally defined on one single species only, the bdelloid rotifer, and further
analyses on plant-parasitic nematodes have shown that an AI > 45 might be too stringent, leaving
several true positives undetectable [9]. Here, we calculated the F1 score (Equation (1)) for all N with
AI > 0 in H. dujardini to decide the optimal threshold between precision and sensitivity. We found
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that selecting genes with AI > 10 represented an optimal balance between sensitivity and precision
(Fig. 4). Therefore, we propose to perform AvP with AI > 0 with FastTree option to minimize the
risk of missing HGT cases and utilise the scripts provided to calculate the F1 score and based on that,
decide the optimal AI threshold (which is 10 for tardigrade example) for more sophisticated analyses.

F1N = 2⇥ HGTAI>N

HGTAI>0 +GenesAI>N
(1)

where:
HGT = genes confirmed to be HGT by AvP
Genes = all the genes tested

Fig. 4. Sensitivity, Precision, and F1 Score were calculated for Alien Index (AI) up to 40 for the proteins of
the tardigrade Hypsibius dujardini. The dashed line indicates the AI with the highest F1 score indicating the
most accurate AI threshold.

4 Perspectives

We propose AvP to facilitate the identification and evaluation of candidate HGTs in sequenced
genomes across multiple branches of the tree of life. The most common methods used so far have been
based on the di↵erence of similarity between donor and ingroup sequences. Performing phylogenetic
reconstruction and alternative topology evaluation creates a framework under which more robust HGT
analyses can be performed. Furthermore, calculating the hgt local score can help identify contami-
nation and HGT hot spots in the genome. Future extensions will include alignment evaluation to
eliminate weak prediction of HGTs, a more precise traverse of complex phylogenetic topologies, and
adding additional criteria for the initial selection of sequences (e.g HGT Index). Finally, we aim to
incorporate a basic module of AvP to the Alieness webserver.

5 Availability

AvP is written in Python and is available online under GNU General Public License v3.0 at
(https://github.com/GDKO/AvP).
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CXUUeQW PeWhRdV WR deWecW eYROXWiRQaU\ cRQYeUgeQce aW Whe PROecXOaU OeYeO, aiP WR deciSheU 
Zhich aPiQR-acid chaQgeV aUe UeOaWed WR a cRQYeUgeQW SheQRW\Se ePeUgiQg fURP Whe VaPe 
eQYiURQPeQWaO cRQVWUaiQWV. The h\SRWheViV iV WhaW cRQYeUgeQW SheQRW\Sic WUaiWV Pa\ 
cRPPRQO\ aUiVe fURP ideQWicaO geQeWic chaQgeV.  
HeUe Ze SURSRVe a ViPXOaWiRQ-baVed PeWhRd WR deWecW SRViWiRQV XQdeU cRQYeUgeQW eYROXWiRQ 
iQ OaUge SURWeiQ aOigQPeQWV, ZiWhRXW SUiRU NQRZOedge Rf Whe SheQRW\Se RU eQYiURQPeQWaO 
cRQVWUaiQWV. TR WhiV aiP, a Sh\ORgeQ\ iV iQfeUUed fURP RXU daWa aQd WheQ XVed iQ ViPXOaWiRQV 
WR eVWiPaWe Whe e[SecWed QXPbeU Rf geQeWic chaQgeV (RU ePeUgeQce-eYeQW Rf PXWaWiRQV) iQ 
VWabOe eYROXWiRQaU\ cRQVWUaiQWV (QXOO PRdeO). SiPiOaUO\, Ze cRXQW Whe ePeUgeQce-eYeQWV Rf 
PXWaWiRQV iQ RXU daWa aQd WeVW if Whe\ aUe RccXUUiQg PRUe RfWeQ WhaQ e[SecWed XQdeU Whe QXOO 
PRdeO.  
We aSSO\ RXU PeWhRd RQ a UeaO daWa VeW Rf HIV UeYeUVe WUaQVcUiSWaVe aQd RQ HIV-OiNe 
ViPXOaWed daWa VeWV. OQ ViPXOaWed daWa, ZiWh NQRZQ eYeQWV Rf cRQYeUgeQW eYROXWiRQ, Ze 
deWecW RQ aYeUage WZR WhiUd Rf WUXO\ cRQYeUgeQW eYeQWV, ZiWh a ORZ fUacWiRQ Rf faOVe SRViWiYeV. 
WiWh HIV daWa, Ze NQRZ a SUiRUi WhaW dUXg UeViVWaQce PXWaWiRQV (DRMV) aUe cRQYeUgeQW. 
EYeQ ZiWhRXW aQ\ NQRZOedge RQ Whe WUeaWPeQW VWaWXV Rf Whe SaWieQWV, Ze UeWUieYe PRUe WhaQ 
70% Rf SRViWiRQV cRUUeVSRQdiQg WR NQRZQ DRMV.  
TheVe UeVXOWV dePRQVWUaWe Whe SRWeQWiaO Rf Whe PeWhRd WR WaUgeW VSecific PXWaWiRQV WR be 
fXUWheU VWXdied e[SeUiPeQWaOO\ RU XViQg a dN/dS aSSURach, fRU e[aPSOe. 

Ke\ZRUdV molecXlar eYolXWion, phylogenetics, VelecWion and adapWaWion, HIV, reViVWance Wo 
drXgV 

1. IQWURdXcWiRQ   

ConYergenW eYolXWion can be defined aV Whe independenW acqXiViWion of Vimilar WraiWV in diVWincW 
lineageV oYer Whe coXrVe of eYolXWion. The VWXdied WraiWV can be behaYioXral, morphological, molecXlar, 
eWc. In each caWegor\, WraiWV can be qXanWiWaWiYe (Vi]e, lengWh, eWc.), binar\ (preVence or abVence of a giYen 
phenoW\pe) or caWegorical (a WraiW iV VXbdiYided inWo VeYeral claVVeV). RecenW VWXdieV focXVed on Whe 
molecXlar leYel, folloZing Whe h\poWheViV WhaW conYergenW phenoW\peV generall\ reVXlW from Whe Vame 
geneWic changeV [1-3]. At the protein level, we commonly distinguish parallel mutations (a change 
towards the same amino acid is observed from the same ancestral amino acids), convergent mutations 
(change towards the same amino acid, from different ancestral amino acids) and reversions (mutations 
that restore an amino acid previously lost during evolution). 

Several methods have been developed to detect convergent evolution at the molecular level [4-9]. 
They are all based on an a priori knowledge or on the observation of a convergent phenotype and aim 
to identify protein mutations that correlate with the presence of the converging trait. To assess whether 
the identified amino-acid changes are the result of some adaptation, one must determine whether they 
are due to chance and to what extent they explain the observed phenotype [10]. The various methods 
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differ among other things in the way they define a null model, i.e., the model that allows determining 
whether observations are due to chance. These methods are commonly applied to large eukaryotic and 
prokaryotic genomes and use genome-wide analyses to select convergent genes by considering 
simultaneously all sites of the protein sequences. Only one method uses statistical tests at the resolution 
of the site, but still requires a priori knowledge of convergence at the phenotypic level [8]. 

Testing the significance of convergent (or parallel or revertant) changes for a given site may have 
interesting applications. In the case of complex eukaryotic or bacterial organisms, there are few 
examples of a single amino-acid change that could explain a convergent phenotype [3]. However, in the 
case of viruses with rapid evolution, and whose (small) genomes are strongly constrained, often only a 
few possible amino-acid changes are possible at a given position. Determining which of the many 
parallel and convergent changes stand out from expectations could allow to sort out the mutations 
resulting from adaptive phenomena. This is in fact what was observed in the SARS-CoV-2 genomes, 
where we first identified non-silent mutations in the Spike protein, which were spreading within the 
viral population and appeared multiple times independently, before being classified as evolutionary 
advantageous for the virus [11-13]. Indeed, in viruses it is often easier to identify a mutation of interest 
than to observe the effects of that mutation given how difficult the phenotype of a virus or the 
environmental conditions in which it evolves are to access. 

Here Ze propoVe a meWhod deVigned Wo deWecW ViWe-ZiVe conYergenW eYolXWion in large amino-acid 
alignmenWV ZiWhoXW prior knoZledge of phenoW\pe. ThiV meWhod performV deWailed anal\ViV aW Whe 
gene/proWein leYel, ZiWh W\pical applicaWion Wo YirXVeV, bXW alVo Wo Vpecific geneV knoZn Wo be inYolYed 
in phenoW\pic conYergence [14]. We are inWereVWed in changeV WoZardV a WargeW amino acid regardleVV of 
Whe anceVWral amino acidV WhaW lead Wo Whe difference in Whe amino acid VeqXenceV. In oWher ZordV, parallel, 
conYergenW and reYerWanW mXWaWionV are conVidered indifferenWl\ and Ze conVider differenW WargeW amino 
acidV aV differenW eYenWV. The obVerYed nXmber of amino-acid changeV iV eVWimaWed ZiWh anceVWral 
characWer reconVWrXcWion, and Wheir e[pecWed nXmber XVing compXWer VimXlaWionV. In Whe folloZing 
VecWionV, Ze deVcribe WhiV approach WhaW Ze implemenWed in a VofWZare named ConDor (ConYergence 
DeWecWor). IWV performance iV aVVeVVed on HIV-like VimXlaWed daWa VeWV and on a real HIV reYerVe 
WranVcripWaVe daWaVeW.  

2. MeWhRdV  

2.1. A VimXlaWiRQ-baVed aSSURach 
ConDor WakeV aV inpXW a mXlWiple proWein VeqXence alignmenW. IW When performV a ViWe-ZiVe anal\ViV 

and idenWifieV for each ViWe (or poViWion) Whe amino-acid mXWaWionV emerging VeYeral WimeV in diVWincW 
lineageV and occXrring VignificanWl\ more freqXenWl\ Whan e[pecWed Xnder a nXll model of eYolXWion. The 
deWailed anal\ViV pipeline iV preVenWed FigXre 1. IW iV made of foXr main VWepV: (1) eVWimaWe Whe parameWerV 
of Whe nXll model from Whe obVerYed daWa (ph\logeneWic Wree, VXbVWiWXWion model parameWerV, ViWe-ZiVe 
eYolXWionar\ raWeV, eWc.); (2) infer anceVWral amino acidV and coXnW Whe nXmber of obVerYed emergence 
eYenWV of mXWaWionV (EEMV) in Whe obVerYed daWa; (3) VimXlaWe neZ daWaVeWV Xnder Whe inferred nXll model 
and coXnW VimXlaWed EEMV; and finall\ (4) compare Whe obVerYed and VimXlaWed nXmber of EEMV and 
deWermine Zhich mXWaWionV occXr VignificanWl\ more ofWen in Whe obVerYed daWaVeW Whan in Whe 
VimXlaWionV. SXch mXWaWionV are conVidered aV conYergenW eYenWV.  

The nXll VXbVWiWXWion model and iWV parameWerV, Whe eYolXWionar\ raWeV per ViWe and Whe ph\logeneWic 
Wree are all inferred from Whe inpXW alignmenW. The VelecWed VXbVWiWXWion model, along ZiWh amino-acid 
freqXencieV, Wree Wopolog\, branch lengWhV and ViWe-ZiVe eYolXWionar\ raWeV are aVVXmed Wo model Whe 
daWa ZiWhoXW conYergence. We make WhiV aVVXmpWion becaXVe XVing large alignmenWV (>1000 VeqXenceV), 
Ze conVider WhaW mXWaWionV reVXlWing from conYergenW eYolXWion are rare enoXgh Wo onl\ haYe a negligible 
inflXence on Wree and parameWer inference. The reconVWrXcWed ph\logen\ iV When rooWed XVing a proYided 
oXWgroXp. ThiV iV eVVenWial Wo infer Whe anceVWral VeqXence aW Whe rooW of Whe Wree, rXn VimXlaWionV VWarWing 
from WhiV VeqXence, and coXnW VimXlaWed EEMV. AnceVWral characWer reconVWrXcWion (ACR) iV achieYed 
XVing a ma[imXm likelihood approach, implemenWed in PaVWML [15]. We XVe Whe ³ma[imXm a 
SRVWeUiRUi´ (MAP) meWhod in Zhich Whe VWaWe ZiWh Whe higheVW marginal poVWerior iV VelecWed aW each 
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node. Once all anceVWral VeqXenceV are reconVWrXcWed and aVVociaWed Wo Whe nodeV in Whe ph\logen\, Ze 
idenWif\ Zhere independenW amino-acid changeV occXrred in Whe Wree and coXnW Whem aV e[plained in Whe 
VXbVecWion ³CoXnWing emergence eYenWV´. ThiV correVpondV Wo Whe obVerYed nXmber of EEMV for each 
alignmenW poViWion and amino acid Xnder VWXd\, WhaW iV, WhoVe WhaW are obVerYed ofWen enoXgh aW a giYen 
poViWion (�12 VeqXenceV in oXr HIV e[perimenWV). 

 

 
FigXUe 1: SimSlified flRZchaUW Rf CRQDRU, RXU SURSRVed VimXlaWiRQ-baVed meWhRd.  

ConDor WakeV an amino-acid alignmenW aV inpXW, XVed for inference of Whe nXll VXbVWiWXWion model, Wree bXilding 
and anceVWral reconVWrXcWion. The reconVWrXcWed Wree and rooW VeqXence are XVed Wo VimXlaWe 10,000 alignmenWV 
Xnder Whe nXll model. The oXWpXW iV a liVW of amino-acid changeV per poViWion deWecWed aV conYergenW, aV Whe\ 

emerge more ofWen in Whe inpXW alignmenW Whan in VimXlaWionV. 

We When VimXlaWe Whe e[pecWed eYolXWion ZiWhoXW conYergence of each ViWe of Whe alignmenW man\ WimeV 
(10,000 in oXr e[perimenWV). We do noW XVe Whe rooW VeqXence reconVWrXcWed b\ ACR aV a VWarW bXW draZ 
amino-acid characWerV in Whe YecWor of poVWerior probabiliWieV. Taking onl\ Whe amino acid ZiWh Whe 
higheVW poVWerior coXld biaV Whe VimXlaWionV, eVpeciall\ if Whe reconVWrXcWion iV XncerWain (for e[ample 
WZo amino acidV ZiWh poVWeriorV of 0.55 and 0.45). If Ze proceed Wo 10,000 draZV in Whe poVWeriorV, Ze 
haYe a beWWer repreVenWaWion of Whe rooW VeqXence. SimXlaWionV are done along Whe inferred Wree, and When 
Ze coXnW Whe VimXlaWed nXmberV of EEMV (10,000 YalXeV per ViWe and per VWXdied amino acid) XVing Whe 
algoriWhm e[plained beloZ. For e[ample, leW XV conVider Whe mXWaWion M41L from Whe real HIV daWa 
Zhere aW poViWion 41, a MeWhionine (M) iV VXbVWiWXWed b\ a LeXcine (L) in 211 VeqXenceV. The obVerYed 
nXmber of EEMV WoZardV L iV 47, Zhich iV Vmaller Whan 211 aV in Vome VXbWreeV all WipV haYe L, 
correVponding Wo onl\ 1 EEM. ThiV nXmber iV compared Wo Whe diVWribXWion of Whe nXmber of EEMV 
WoZardV L, VWarWing from an M aW Whe Wree rooW eYer\ Wime (no ambigXiW\ in ACR), among 10,000 
VimXlaWionV; WhiV nXmber of VimXlaWed EEMV rangeV from 0 Wo 31 ZiWh an aYerage of 12. From Whe 
obVerYed nXmber of EEMV and Whe diVWribXWion of VimXlaWed EEMV Ze eVWimaWe a p-YalXe for each 
obVerYed mXWaWion, Zhich iV eqXal Wo 0 in oXr M41L e[ample. AfWer conVidering a correcWion for mXlWiple 
WeVWing, mXWaWionV ZiWh p-YalXeV loZer Whan Whe rejecWion criWerion are conVidered aV reVXlWing from 
conYergenW eYolXWion. 
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2.2. CRXQWiQg iQdeSeQdeQW emeUgeQce eYeQWV Rf mXWaWiRQV (EEMV) 
In oXr approach, Whe obVerYed nXmber of EEMV iV inferred from ACR baVed on Whe inpXW VeqXenceV, 

Zhile Whe e[pecWed nXmber of EEMV iV inferred from man\ VimXlaWionV eYolYing from Whe probabiliVWic 
rooW VeqXence along Whe inferred Wree. In Whe VimXlaWionV, changeV ma\ appear WhaW coXld noW be inferred 
b\ ACR, if Whe\ are noW WranVmiWWed Wo an\ leaf for e[ample. In WhiV caVe, Whe eVWimaWed nXmber of changeV 
arWificiall\ deYiaWeV from Whe obVerYed nXmber. ThiV effecW iV eYen more imporWanW on ViWeV ZiWh rapid 
eYolXWion Vince more changeV are e[pecWed. ThXV, onl\ Whe changeV WranVmiWWed Wo aW leaVW one leaf are 
coXnWed in oXr meWhod, Vince Whe\ are Whe onl\ oneV WhaW coXld be foXnd b\ ACR. NoWe, moreoYer, WhaW 
generall\ Ze are onl\ inWereVWed b\ Whe amino acidV preVenW in Whe aYailable, acWXal VeqXenceV, and rarel\ 
b\ WhoVe WhaW are neYer obVerYed. EYen WhoXgh Ze coXnW EEMV ZiWhoXW making Whe difference beWZeen 
conYergenW, parallel or reYerWanW eYenWV, Ze reWain Whe informaWion dXring Whe coXnWing proceVV for 
inWerpreWaWion afWerZardV. All WheVe algoriWhmV (ACR aV implemenWed in PaVWML, coXnWing EEMV, 
VimXlaWionV) haYe a Wime comple[iW\ WhaW iV linear in Whe nXmber of Wree WipV, WhankV Wo carefXll\ 
orcheVWraWed Wree WraYerValV [15]. 

2.3. CUeaWiRQ Rf a V\QWheWic HIV-like daWaVeW  
To oXr knoZledge, Where iV no conYergenW eYolXWion model alloZing Wo VimXlaWe WhoXVandV of 

VeqXenceV ZiWhoXW prior knoZledge of Whe phenoW\pe or enYironmenWal conVWrainWV. We Wherefore creaWed 
oXr oZn conYergenW daWa VeW inVpired from a real caVe of conYergence. DrXg reViVWance mXWaWionV 
(DRMV) are mXWaWionV WhaW occXr independenWl\ in paWienWV receiYing a drXg WreaWmenW and are Wherefore 
a perfecW e[ample of eYolXWionar\ conYergence. In HIV, Whe\ are Zell characWeriVed and VWXdied, Vince 
Wheir emergence can lead Wo WreaWmenW failXre and WranVmiVVion of reViVWanW YirXVeV. The\ are 
preferenWiall\ foXnd in proWeinV WargeWed b\ Whe anWireWroYiral WreaWmenW: Whe proWeaVe, Whe reYerVe 
WranVcripWaVe, and Whe inWegraVe. The liVW of DRMV on WheVe proWeinV iV pXblicl\ aYailable aW 
(hWWpV://hiYdb.VWanford.edX/). DRMV are ZriWWen aV ³XpoVY´ ZiWh X Whe anceVWral amino acid, poV Whe 
poViWion of Whe VXbVWiWXWion in Whe proWein alignmenW, ZiWh nXmbering baVed on Whe reference VeqXence 
HXB2, and Y Whe mXWaWed amino acid.   

UVing a real HIV pol\meraVe amino-acid daWaVeW (250 ViWeV, 3,387 VeqXenceV), Ze e[WracWed poViWionV 
and VeqXenceV ZiWh DRMV and replaced Whem ZiWh gapV in Whe mXlWiple VeqXence alignmenW (MSA). 
DRMV Zere reWrieYed from Whe ³EVVenWial DRM DaWa´ VecWion of Whe SWanford UniYerViW\ DrXg reViVWance 
daWabaVe (hWWpV://hiYdb.VWanford.edX/pageV/poc.hWml). We When reconVWrXcWed a Wree and inferred Whe raWeV 
of VXbVWiWXWion per ViWe. ThiV Wree repreVenWV relaWionVhipV beWZeen VeqXenceV in Whe real daWa and iWV 
Wopolog\ iV noW affecWed b\ Whe DRMV. We When VimXlaWed Whe eYolXWion of Whe HXB2 reference VeqXence 
(reYerVe WranVcripWaVe onl\) along WhiV Wree. We performed Whe VimXlaWionV fiYe WimeV for reprodXcibiliW\ 
pXrpoVeV reVXlWing in fiYe mXlWiple VeqXence alignmenWV (MSAV) ZiWhoXW conYergence. DRMV Zere When 
manXall\ added in Whe Vame VeqXenceV and poViWionV aV Zhere Whe\ Zere foXnd in Whe real MSA. ThiV 
enVXreV WhaW Whe Za\ Ze VimXlaWe conYergence iV realiVWic. We did WhiV for each of Whe 37 WeVWed DRMV 
Zhich Zere Whe moVW common (preVenW in � 12 VeqXenceV). ThXVl\, Whe fiYe reVXlWing MSAV haYe no 
conYergenW eYenWV, bXW Whe ³realiVWic´ added DRMV.  

3. ReVXlWV 

3.1. S\QWheWic HIV-like daWa VeW 
The daWa conViVWV of fiYe MSAV of 3,387 VeqXenceV and 250 amino acidV each, mimicking HIV reYerVe 

WranVcripWaVe and VimXlaWed Xnder HIVb model of eYolXWion [16]. In WoWal, 37 DRMV Zere placed in each 
of Whe MSAV oYer 27 poViWionV (Vee aboYe). TheVe DRMV are foXnd in aW leaVW 12 VeqXenceV and aboXW 
20% of VeqXenceV haYe aW leaVW one DRM. The moVW common one, M184V, iV foXnd in 273 (8%) 
VeqXenceV. HoZeYer, 19 DRMV are foXnd in leVV Whan 1% of Whe VeqXenceV (i.e., in 12 Wo 33 VeqXenceV) 
Vo Whe\ are e[pecWed Wo be difficXlW Wo idenWif\. 

The model inferred from Whe daWa VeWV b\ ModelFinder [17] ZaV HIVb, Zhich iV Whe model Ze XVed 
for generaWing Whem. ThXV, Wree reconVWrXcWion, ACR and VimXlaWionV Zere all done ZiWh HIVb, Zhich iV 
Whe WrXe model of VXbVWiWXWion in WheVe VimXlaWionV. 
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We WeVWed on aYerage 441 mXWaWionV per daWaVeW, Whe oneV preVenW in aW leaVW 12 VeqXenceV and ZiWh 
more Whan 2 EEMV. On aYerage 27.4 mXWaWionV Zere foXnd Wo be conYergenW according Wo oXr meWhod. 
Among Whem 26 Zere WrXe DRMV (among 37). 

In WheVe V\nWheWic daWa VeWV, Whe nXmberV of EEMV for Whe DRMV range from 9 (K101P) Wo 225 
(M184V). We beWWer deWecW DRMV ZiWh Whe higheVW nXmber of EEMV and eVpeciall\ ZiWh more Whan 30 
EEMV aV Ze find more Whan 90% of Whe DRMV ZiWh more Whan 30 EEMV on aYerage. If Where are VeYeral 
DRMV for one poViWion, Ze generall\ deWecW Whe moVW freqXenW one(V) onl\. For e[ample, on poViWion 219 
Ze deWecW mXWaWionV WoZardV Q and E bXW noW N. Similarl\, on poViWion 215, Ze do noW deWecW mXWaWionV 
WoZardV S and D, Zhile Ze deWecW mXWaWion T215C, alWhoXgh Where are feZer EEMV WoZardV C. ThiV iV 
e[plained b\ Whe VXbVWiWXWion raWe beWZeen T and C WhaW iV Yer\ loZ, and WhXV feZ changeV are e[pecWed 
from T WoZardV C: 2 EEMV are e[pecWed on aYerage in Whe 10,000 VimXlaWionV beWZeen T and C aW 
poViWion 215, Zhile 17 are foXnd in aYerage in Whe fiYe V\nWheWic daWa VeWV.  

On aYerage Ze find 1.4 falVe poViWiYeV per daWa VeW, Vome of Zhich e[hibiW a Yer\ high eYolXWionar\ 
raWe: aV Whe eYolXWionar\ raWe increaVeV, more changeV are obVerYed aW Whe giYen ViWe and WhXV more 
YariabiliW\ and XncerWainW\ in Whe VimXlaWionV. ThXV, Yer\ faVW ViWeV can biaV conYergence deWecWion and 
lead Wo Whe deWecWion of falVe poViWiYeV. AV e[pecWed, Ze obVerYe Yer\ feZ falVe poViWiYeV Zhen anal\Ving 
oXr V\nWheWic daWaVeWV ZiWh Whe WrXe model of eYolXWion. If Ze focXV on deWecWing poViWionV ZiWh 
conYergence (e.g., 219) raWher Whan DRMV (e.g., K219Q, K219E, K219N, eWc.) Ze increaVe in accXrac\ 
and deWecW on aYerage 22 of Whe 27 conYergenW poViWionV for all daWaVeWV, Zhile Whe nXmber of falVe 
poViWiYe remainV eqXal Wo 1.4 on aYerage (Tab. 1). 

 

 
Table 1: Method accuracy with synthetic data.  

We show the number of mutations or positions detected on the synthetic HIV-like MSAs, analysed with HIVb 
and JTT model of evolution. Average for the 5 datasets are reported and standard deviation is given between 

parentheses. True positives are at the intersection between detected and DRMs, and false positives at the 
intersection between detected and non-DRMs. Non-DRMs are mutations resulting from the evolution of the root 

sequence under the null model; they exhibit more than 2 EEMs and are found in at least 12 sequences. 

Since Ze neYer haYe Whe WrXe model of eYolXWion ZiWh real daWa, Ze WeVWed Whe effecW of model YiolaWion 
on Whe V\nWheWic daWaVeW. We fi[ed Whe program Wo rXn all anal\VeV ZiWh JTT for Wree reconVWrXcWion, ACR 
and VimXlaWionV, inVWead of leWWing Whe program infer and XVe Whe beVW model of eYolXWion (here HIVb). 

The VWrongeVW effecW can be Veen on Whe nXmber of falVe poViWiYeV, Zhich increaVeV from 1.4 Wo 17.2 
(Tab. 1). Compared Wo Whe nXmber of negaWiYeV, WhiV remainV Yer\ loZ, ZiWh 4% of falVel\ deWecWed 
random mXWaWionV (i.e., mXWaWionV reVXlWing from Whe eYolXWion Xnder Whe nXll model) among more Whan 
400. MoreoYer, Ze obVerYe again Whe Vame Wendenc\ ZiWh high-raWe mXWaWion eYenWV among falVe 
poViWiYeV. The deWecWed mXWaWionV ZiWh Whe higheVW raWeV are alZa\V falVe poViWiYeV. Since Whe model doeV 
noW repreVenW e[acWl\ Whe V\nWheWic daWaVeW, Ze Wend Wo deWecW more mXWaWionV aV conYergenW, bXW WhiV doeV 
noW impacW Whe deWecWion of DRMV. DRM deWecWion remainV accXraWe and iV robXVW Wo model YiolaWion. 
HoZeYer, baVed on WheVe reVXlWV, Ze e[pecW falVe poViWiYeV ZiWh real daWa, repreVenWing a VXbVWanWial 
fracWion of deWecWionV (40% on aYerage in Tab. 1 ZiWh JTT model). TrXe poViWiYeV Wend Wo be mXWaWionV 
ZiWh Whe moVW EEMV, loZ VXbVWiWXWion raWe beWZeen amino acidV and on ViWeV ZiWh mediXm eYolXWionar\ 
raWe. On Whe oppoViWe, faVW ViWeV Wend Wo be deWecWed aV conYergenW, eYen if Whe\ are noW. 

  DRMs Non-DRMs  Total 
 Model Mutation Position Mutation Position Mutation Position 
Detected HIVb 26 (±1.2) 22 (±1.2) 1.4 (±1.14) 1.4 (±1.1) 27.4 (±1.5) 23.4 (±1.3) 

JTT 25.2 (±0.8) 22.4 (±0.5) 17.2 (±3) 15.8 (±2.6) 42.4 (±2.5) 38.2 (±2.3) 
Not 
detected 

HIVb 11 (±1.2) 5 (±1.2) 402.8 (±6.8) 91.2 (±1.6) 413.8 (±7.15) 96.2 (±2.5) 
JTT 11.8 (±0.8) 4.6 (±0.5) 392.8 (±13.7) 70.2 (±4.3) 404.6 (±14) 74.8(±4.3) 

Total HIVb 37 27 404.2 (±6) 92.6 (±1.7) 441.2 (±5.6) 113.2 (±1.5) 
JTT 37 27 410 (±14.3) 86 (±3.4) 447 (±14.3) 113 (±3.4) 
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3.2. Real HIV daWa VeW 
ThiV daWaVeW conViVWV in a MSA of WrXncaWed pol\meraVe from HIV-1 VXbW\pe B. IW ZaV reWrieYed 

from Lemoine eW aO [18]. IW conWainV 3,581 VeqXenceV of 1,043 nXcleoWide ViWeV WhaW Zere WranVlaWed inWo 
347 amino acidV. Among WheVe 347 amino acidV, 250 code for Whe reYerVe WranVcripWaVe and are 
anal\Ved here. SlighWl\ more Whan 20% of Whe VeqXenceV haYe aW leaVW one DRM and on aYerage Whe 
knoZn DRMV (hWWpV://hiYdb.VWanford.edX/pageV/poc.hWml) are foXnd in 11 VeqXenceV. The moVW 
common one, M184V iV foXnd in 273 VeqXenceV. There are 37 DRMV preVenW in aW leaVW 12 VeqXenceV, 
Whe Vame oneV aV in Whe V\nWheWic daWaVeWV. The\ are diVWribXWed on 27 poViWionV. We focXV on WheVe 37 
DRMV Wo aVVeVV Whe performance of oXr approach aV Ze WeVW for conYergence mXWaWionV preVenW in aW 
leaVW 12 VeqXenceV and ZiWh more Whan 2 EEMV. AV alread\ e[plained, Ze e[pecW deWecWing oWher 
mXWaWionV, Vome being WrXl\ conYergenW and Vome correVponding Wo falVe poViWiYeV, likel\ dXe Wo model 
miVVpecificaWion and poViWioned on faVW ViWeV. 

The model inferred ZiWh ModelFinder [17] on WhiV daWaVeW iV HIVb ZiWh µfree raWeV¶ and 9 raWe 
caWegorieV. We deWecW 74 conYergenW eYenWV afWer appl\ing Whe Benjamini Hochberg correcWion 
(correcWed p-YalXe WhreVhold of 0.0004, correVponding Wo an alpha leYel of 5%). Among WheVe 
deWecWionV, 20 are DRMV Zhich repreVenWV more Whan half (54%) of WrXe DRMV. The non-DRM 
deWecWed eYenWV correVpond Wo 11 mXWaWionV on faVW ViWeV (Fig. 2), Zhich are likel\ falVe poViWiYeV and 
oWher eYenWV for Zhich Ze cannoW conclXde. Regarding falVe predicWionV, 17 DRMV are noW deWecWed, 7 
of Zhich haYing a p-YalXe loZer Whan 0.005 bXW higher Whan Whe Vignificance WhreVhold. If Ze focXV on 
poViWionV inVWead of mXWaWionV, Ze deWecW 65 poViWionV aV conYergenW inclXding 19 (70%) of Whe 
poViWionV ZiWh DRMV. 

 
Figure 2: DRMs detection and convergent candidates, real HIV data.  

We display DRMs that are detected or not and convergent candidates predicted by ConDor on the real HIV-1 
MSA, analysed with the HIVb substitution model. Events are sorted by their number of EEMs on the x-axis. On 

the y-axis we report the evolutionary rate of the site of each mutation. This evolutionary rate is normalized 
between 0 and 1. The plain horizontal line represents the limit of the 5% fastest sites of the whole dataset; above 

this threshold the mutations are likely due to homoplasy and do not reflect any convergence. 

4. DiVcXVViRQ 
We haYe VhoZn in WhiV Zork WhaW Ze can deWecW ZiWh fair accXrac\ eYolXWionar\ conYergence aW Whe 

reVolXWion of a ViWe, eYen ZiWhoXW prior knoZledge of Whe phenoW\pe or enYironmenWal conVWrainWV. ThiV 
iV poVVible Vince Ze are Zorking aW Whe Vcale of a Vingle proWein ZiWh WhoXVandV of VeqXenceV, Zhich 
proYideV VXfficienW Vignal and deWecWion poZer. B\ Zorking on WhoXVandV or eYen millionV of ViWeV, 
ConDor ZoXld lack Whe VWaWiVWical poZer Wo Zork aW Whe Vcale of a Vingle ViWe dXe Wo mXlWiple WeVWing. We 
do noW conVider Whe phenoW\pe of Whe studied organiVmV, becaXVe Ze haYe deVigned WhiV meWhod for Whe 
VWXd\ of Vpecific geneV, W\picall\ from YirXVeV and microorganiVmV Zhere WhiV daWa iV rarel\ aYailable. 
One coXld hoZeYer Whink aboXW adapWing WhiV meWhod Wo VelecW VignificanWl\ conYergenW ViWeV ZiWh regardV 
Wo Wheir preVence in organiVmV preYioXVl\ annoWaWed aV conYergenW.  

In Vome Za\V, oXr approach preVenWV VimilariWieV ZiWh Whe deWecWion of ViWeV Xnder poViWiYe VelecWion. 
We are indeed looking for mXWaWionV which could be advantageous as they are found more ofWen Whan 
e[pecWed Xnder a neXWral model of eYolXWion. PoViWiYe VelecWion can be inferred aW a ViWe if Whe nXmber of 
non-V\non\moXV VXbVWiWXWionV e[ceedV Whe nXmber of V\non\moXV VXbVWiWXWionV. TheVe VXbVWiWXWionV 
can be WoZardV a parWicXlar amino acid or an\ change from Whe original amino acid. ThiV iV, for e[ample, 
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Whe caVe in immXne aYoidance Zhere man\ amino-acid changeV aW Whe anWigenic ViWe are faYoXrable. 
HoZeYer, in Whe caVe of conYergenW eYolXWion, and eVpeciall\ here ZiWh Whe e[ample of DRMV, Ze are 
inWereVWed in VXbVWiWXWionV WoZardV one or a feZ Vpecific amino acidV. PoViWiYe VelecWion coXld be a Za\ 
Wo confirm Vome of oXr deWecWionV, bXW on Whe conWrar\, noW all ViWeV Xnder poViWiYe VelecWion are 
conYergenW.  

WiWhoXW knoZledge of Whe phenoW\pe, Ze neceVVaril\ obVerYe Vome falVe poViWiYeV aV Veen in oXr 
V\nWheWic HIV-like daWa VeWV b\ changing Whe model from HIVb Wo JTT. Similarl\, in real daWa, aV Ze do 
noW knoZ Whe WrXe model of eYolXWion, Vome of oXr deWecWionV are likel\ Wo be falVe poViWiYeV. Indeed, oXr 
meWhod relieV on hoZ realiVWic Whe WhoXVandV of VimXlaWionV acW aV a nXll model. OXr reVXlWV VhoZ WhaW 
for moVW ViWeV and moVW mXWaWionV Ze are cloVe Wo ZhaW iV obVerYed in real daWa and VimXlaWionV repreVenW 
a VaWiVfacWor\ nXll model. HoZeYer, on cerWain faVW ViWeV Ze obVerYe WhaW VimXlaWionV Wend Wo differ from 
Whe real daWa, Zhich reVXlWV in an increaVed raWe of falVe poViWiYeV. More inYolYed modelV, e.g. baVed on 
mi[WXreV or Vome ideaV deriYed from Whe CAT model [19], coXld poVVibl\ enhance oXr approach. 

ConDor iV aYailable aW hWWpV://condor.paVWeXr.cloXd/ and all anal\ViV and daWa can be foXnd aW 
hWWpV://giWhXb.com/mariemorel/condor.  
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LORIA (Université de Lorraine, CNRS, Inria)

2
CRAN (Université de Lorraine, CNRS) Contact: athenais.vaginay@loria.fr

Corresponding author: athenais.vaginay@loria.fr

Reference paper: Vaginay et al. (june 2021) Automatic Synthesis of Boolean Networks from

Biological Knowledge and Data International Conference in Optimization and Learning (OLA),

long paper accepted for publication in the OLA 2021 Springer CCIS proceedings.

https://hal.archives-ouvertes.fr/hal-03256693

Boolean Networks (BNs) are a simple formalism used to study complex biological systems when the
prediction of exact reaction times is not of interest. They play a key role in understanding the dynamics
of the studied systems and predicting their disruption in case of complex human diseases. A BN consists
of a set of n Boolean transition functions (one per components) giving the successive Boolean states
of the components, depending on the previous state of the other components of the system. Here is an
example of a BN of three components called A, B and C: B = {fA := C ; fB := B^¬C ; fC := ¬C}.
It reads like “A will be activated is C was activated”, “B will be activated if B was activated but C was
not” and “C will be activated if C was not”. The dynamics of a BN is obtained by applying iteratively
the transition functions starting from all the 2n possible configurations. The order of application of
the transition functions is defined by the update scheme. In the mixed updated scheme, any number
of components can be updated at each step. The dynamics is represented by a directed graph whose
nodes are the 2n configurations and the edges are the transitions according to the chosen update
scheme. Such a graph is called state transition graph (STG).

BNs are generally built from experimental data and knowledge from the literature, either manually
or with the aid of programs. The automatic synthesis of BNs is still a challenge for which several
approaches have been proposed, such as REVEAL [1], Best-Fit [2] and caspo-TS [3]. In this paper,
we propose ASKeD-BN, a new approach based on Answer-Set Programming (ASP) to synthesize BNs
constrained in their dynamics by a multivariate Time Series (TS), and in their structure by a Prior
Knowledge Network (PKN). A PKN is a directed graph on the components of the system. It constrains
the structure of the synthesized BNs by defining which components can appear as variables in each
transition function and the polarity of those variables. The synthesized BNs also have to reproduce as
well as possible the sequence of configurations extracted from the given multivariate TS.

We compare ASKeD-BN with REVEAL, Best-Fit and caspo-TS according to three criteria: (i) the
number of BNs returned by the approaches ran on a PKN and a multivariate TS; (ii) the median of
the coverage ratios i.e., the proportion of transitions extracted from the input TS that are present in
the mixed STG of the BN; (iii) the standard deviation of the coverage ratios. We ran experiments
on two real datasets and more than 300 synthetic datasets according to various settings (synchronous
or asynchronous, with or without repetition, with or without noise), and provided empirical evidence
that ASKeD-BN has the best trade-o↵ on the evaluation criteria: it returns a small set of BNs which
comply with the provided structural constraints, cover a good proportion of the dynamical constraints,
with a small variance.
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2 INRIA, Centre de recherche INRIA de Paris, 75012 Paris, France
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Abstract Causality analysis of rule-based models allows the reconstruction of the causal
paths leading to chosen events of interest. This potentially reveals emerging paths that were
completely unknown at the time of creation of a model. However, current implementations
provide results in the form of a collection of stories. For large models, this can amount to
hundreds of story graphs to read and interpret for a single event of interest. In this work,
we hence develop a method to fold a collection of stories into a single quotient graph.
The main challenge is to find a trade-o↵ in the partitioning of story events which will
maximize compactness without loosing important details about information propagation in
the model. The partitioning criterion proposed is relevant context, the context from an
event’s past which remains useful in its future. Each step of the method is illustrated on a
toy rule-based model. This work is part of a longer term objective to automatically extract
biological pathways from rule-based models.

Keywords Causality, Rule-based modelling, Visualisation, Graph folding, Concurrency

1 Introduction

Rule-based modelling [1,2] is well suited to the construction of large models characteristic of systems
biology. Rules distinguish themselves from reactions by focussing only on the part of molecules that
changes during a transition, rather than fully defining the species involved. This lets rule-based models
avoid combinatorial explosion issues and obviates the need to reduce models toward a predefined goal.
Subsequent analysis can then reveal emerging properties that were initially completely unknown by
the modellers.

Causality analysis is one of the most interesting analyses to perform on rule-based models. It allows
the reconstruction of the causal paths, also called stories, leading to a chosen event of interest [3].
Considering a protein involved in some pathology for instance, it would provide a quantitative account
of each upstream molecule’s contribution to its activation. However, current implementations [3,4]
present the results of causality analysis as a collection of individual stories. In a large systems biology
model, this can amount to hundreds of story graphs to read and interpret for a single event of interest.

The goal of this work is to develop a compact representation that allows the visualisation of all
the paths leading to an event of interest on a single graph. To do so, we fold a collection of stories by
merging events that are deemed equivalent. The broader the definition of equivalence between events,
the more compact the folded representation is. Yet, folding too much may merge events which are
similar but play di↵erent roles in the propagation of information. Thus, a trade-o↵ has to be found.
Here, we refine each event in stories with some contextual information about its past, modulated by
the usefulness of that context in its future. We use this additional information to define the quotient
of events in families of stories. As a result, we obtain a quotient that remains compact but provides
a better insight on the way information is processed in the models.
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2 Initial Setting

2.1 Kappa Rule-Based Model

The toy model below is written in Kappa language [5] and will be used to illustrate the method
developed in this work. Such toy model does not represent the kind of large systems that can typically
benefit from rule-based modelling. However, it features events whose context is not trivially determined
and is hence well suited to highlight the details of the methodology.

%agent: A(x)

%agent: B(y)

%agent: C(x y z{u,p})
%agent: D(z s{u,p})
’A binds C’ A(x[./1]), C(x[./1]) @ 0.01

’B binds C’ B(y[./1]), C(y[./1]) @ 0.01

’A phos C’ A(x[1]), C(x[1] z{u/p}) @ 1

’B phos C’ B(y[1]), C(y[1] z{u/p}) @ 1

’C binds D’ C(z[./1]{p}), D(z[./1]) @ 0.01

’A phos D’ A(x[1]), C(x[1] z[2]), D(z[2] s{u/p}) @ 1

’B phos D’ B(y[1]), C(y[1] z[2]), D(z[2] s{u/p}) @ 1

%init: 100 A()

%init: 100 B()

%init: 100 C()

%init: 100 D()

%obs: ’Dphos’ |D(s{p})|
%mod: [true] do $TRACK ’Dphos’ [true];

For a description of the Kappa syntax, see [5]. Briefly, bonds are noted as a shared number between
brackets. For example, A(x[1]), C(x[1]) means that A and C are bound through their respective
site x. A dot between brackets, like A(x[.]), means that a site is free of any bond. States are given
between braces. For example, C(z{p}) means here that site z of C is phosphorylated. In the definition
of rules, a forward slash indicates an edit. What appears before the slash is a precondition, the binding
or state value that a site must take to allow the firing of a rule. After the slash is the new binding or
state value taken by a site after the firing of the rule. Brackets and braces without a forward slash
inside them represent required preconditions that are unchanged by the firing of the rule.

Fig. 1 shows a sketch of the toy model, which can be described as follows. Kinases A and B can bind
to protein C, each through a di↵erent binding site. Both A or B can phosphorylate site z of protein C

once they are bound. Protein C can bind to D, but only after C was phosphorylated. A or B can then
phosphorylate D as well, but only if they are in a same molecular complex as D. The phosphorylation
of protein D is set as the event of interest. This simplified model is representative of sca↵olding as it
can occur in cell signalling. Protein C for instance could contain SH2 domains [6] to recruit kinases
which would in turn phosphorylate multiple residues within a complex.

A

C

x

B
y

x
y

Dz z s

Fig. 1. Sketch of the toy model used to illustrate the method developed in this work.
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2.2 Stories

Traces of computation from rule-based models can be sampled by the means of stochastic simu-
lators [7,8]. Yet, such traces are not convenient to understand the mechanisms of signal processing
because they contain satellite events that are unnecessary. They also describe precisely the order
in which events occurred even when these events are causally independent. However, traces may be
post-processed in order to extract relevant information. Event structures [9] abstract away the in-
terleaving order between causally independent events. Then, irrelevant events may be discarded by
using operational research techniques [3] or heuristic approaches [4]. The remaining events are the
necessary steps required to reach the event of interest. Their representation in the form of a graph is
called a story.

Fig. 2 shows the four stories corresponding to the four possible ways of obtaining phosphorylated D

from the initial conditions of the toy model. Story 1 represents the case where kinase A phosphorylates
both C and D. Story 2 is similar, but uses kinase B instead. Stories 3 and 4 represent cases where kinase
A phosphorylates C and then kinase B phosphorylates D, or the other way around.

A

A binds C

DA phos C

C binds D

A phos D

Dphos

B

B binds C

DB phos C

C binds D

B phos D

Dphos

Story 1 Story 2 Story 3 Story 4

A C B

A binds C B binds C

DA phos C

C binds D

B phos D

Dphos

B C A

B binds C A binds C

DB phos C

C binds D

A phos D

Dphos

C C

Fig. 2. The four possible stories to the phosphorylation of protein D in the toy model. Events are shown as
rectangular nodes. Introduction nodes are shown as circles and represent the involvement of a new individual
protein in the story. The event of interest appears as a red octagonal node. Edges represent precedence
relationships. All graphs in this work were built with Graphviz [10].

Note that stories represent concurrency, or parallelism. When a given node has more that one
incoming edge, those edges share an and relationship. In story 3 for instance, events "C binds D"

and "B binds C" are both required to enable "B phos D". Alternative paths cannot be represented
within a story. They are rather shown as distinct stories.

3 Method

The story folding method presented in this work is implemented in the Python package Kappa-
Pathways [11]. The package is currently under development and still requires the implementation
of additional functionalities before fully fledged pathway extraction from rule-based models can be
performed.

3.1 Quotient of stories with concurrency

The main goal of this work is to build a compact representation of the results obtained from
causality analysis of rule-based models. To do so, we seek to fold any arbitrarily large collection of
stories into a single quotient graph. The first intuitive way to partition story events is according to
the Kappa rules that they represent. That is, looking at the four stories from Fig. 2, all nodes with
the same label are merged together.
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Fig. 3, left shows the quotient obtained by simply partitioning story events according to their
corresponding Kappa rule. While this graph does summarize some of the information from all the
stories, it also clearly introduces ambiguities. For instance, readers could be mislead into thinking
that completing event "A binds C" is su�cient to reach "A phos D", while in reality "C binds D"

is also necessary. This ambiguity arise because when a node in the quotient graph has more than one
incoming edge, it is impossible to know whether each edge comes from distinct stories or concurrent
branches of a same story.

A binds C B binds C

A phos C

Dphos

B phos DA phos D

C binds D

B phos C

A binds C B binds C

A phos C

Dphos

B phos DA phos D

C binds D

B phos C

Fig. 3. Quotients of the four stories from Fig. 2. Left) Quotient obtained by partitioning event nodes according
to their corresponding Kappa rule. Right) Quotient with hyperedges representing concurrency. Introduction
nodes were removed for clarity.

Fig. 3, right illustrates a simple solution to the representation of concurrency in the quotient
graph. Before the folding operation, any story edges that have the same target are regrouped in a
single hyperedge with many sources and one target. The ensuing quotient allows a clear distinction
between concurrent and alternative paths.

Still, the graph from Fig. 3, right remains misleading. It suggests paths that are not coherent with
the model. For instance, the path "A phos C" →"C binds D" →"B phos C" seems allowed by itself.
According to the model, it is instead only possible if "B binds C" also occurs concurrently. This
inconsistent interpretation of the quotient graph tells us that a partitioning of events simply based
on Kappa rules folds the stories too much. The next section presents additional event partitioning
criteria that solve those ambiguities.

3.2 Relevant context

Looking back at stories 1 and 2 from Fig. 2 provides a hint into why folding too much produces
a quotient with paths that are inconsistent with the model. Those two stories both pass through a
same type of event, namely "C binds D". However, their preceding events are di↵erent. Although the
latest modification that both stories went through is the same, the accumulated state of the molecules
involved up to that point is di↵erent. They may hence have di↵erent futures open to them. That
is, not only the events themselves matter, but also the context that was built up in their past. Still,
not all past context may be relevant. A good trade-o↵ must be found in the information that is kept
about the context of each event. Too much information leads to a blow-up in the quotient graph
that may become unreadable or even too costly to compute, whereas too few information may not be
discriminant enough. In this work, we propose that the appropriate amount of information to keep
corresponds to the relevant context.

The relevant context of a given event consists in the context from its past which remains useful
in its future. More precisely, this corresponds to the locally relevant context, which appears relevant
within a same story. We also define the globally relevant context as the context from an event’s past
which is found useful in the future of other stories which pass through an event corresponding to the
same Kappa rule. The information about context can be extracted from the trace that was used to
produce the stories. The following steps describe how we obtain context for each event and determine
its relevance.
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3.2.1 Edit nodes First, for each story, the modifications that are performed by every event are
extracted from the trace as illustrated on Fig. 4. Each individual modification is called an edit and
is represented by a separate node connected to the event which it originates from. Edit nodes are
labelled according to the modification that they correspond to using the Kappa syntax. Edges are
then added from edit nodes to the downstream events which require them later in the story. Edges
that do not correspond to any edge from the original story are referred to as transitive edges.

A C

A(x[.]) C(z{u}) C(z[.]) C(y[.])C(x[.])

A binds C

A(x[1])
C(x[1])

BDA phos C

B(y[.])D(s[.]) D(s{u})D(z[.])C(z{p})

B binds CC binds D

D(z[1]),
C(z[1])

B phos D

D(s{p})

Dphos

C(y[1]),
B(y[1])

Fig. 4. Addition of edit nodes to story 3 from Fig. 2. Edit nodes are shown in blue and their labels represent
modified sites in Kappa syntax. Transitive edges are shown in gray.

3.2.2 Locally relevant context Second, the locally relevant context is determined as illustrated
on Fig. 5. The following substeps are performed iteratively from top to bottom on the graph with
added edit nodes. a) The current node is selected as the first edit node from the top of the graph whose
locally relevant context was not already computed, excluding edits coming from introduction nodes.
b) The past context of the current node is gathered. It first consists in the immediate upstream edit
nodes from the current node, ignoring transitive edges. Neighboring nodes are also added as the edit
nodes coming from the same event or introduction node as any upstream node. Lastly, the context
that was found for those upstream and neighbor nodes during previous iterations is added to the past
context of the current node. c) The locally relevant context is found as any past context node that
remains useful in the future of the current node. On the graph, this corresponds to any past context
node that have at least one path to a node which is reachable from the current node. The path should
however not pass through the current node or an edit node that is incompatible with the edit from
the past context node.

Fig. 5, left shows the first iteration of the steps described above on story 3 from Fig. 2. It provides
the locally relevant context associated with event "A binds C". Two elements of context are found
relevant, as displayed by the two green edges and the inscription z[.]{u} on the label of the highlighted
current node. This indicates that the locally relevant context is that protein C must have its site z

free of any bond, and also unphosphorylated. Those two edits from the past are useful for future
events "C binds D" and "A phos C", respectively. Also note the red dashed edges which indicate
past context nodes whose path to the future of the current node was blocked by incompatible edits.

Fig. 5, right shows the second iteration of locally relevant context determination. It now focusses
on the context of event "A phos C". Only the edit node coming from event "A binds C" counts
here as an immediate upstream node since the edge to C(z{u}) is transitive. C(z[.]) and C(z{u})
are nevertheless subsequently added as past context because the were found as relevant during the
previous iteration.
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A C

A(x[.]) C(z{u}) C(z[.]) C(y[.])C(x[.])

A binds C

A(x[1]),
C(x[1] z[.]{u}

BDA phos C

B(y[.])D(s[.]) D(u{s})D(z[.])C(z{p})

B binds CC binds D

D(z[1]),
C(z[1])

B phos D

D(s{p})

Dphos

C(y[1]),
B(y[1])

A C

A(x[.]) C(z{u}) C(z[.]) C(y[.])C(x[.])

A binds C

A(x[1]),
C(x[1] z[.]{u})

B(y[.])D(s[.]) D(u{s})D(z[.])C(z{p} z[.])

D(z[1]),
C(z[1])

C(y[1]),
B(y[1])

BDA phos C

B binds CC binds D

B phos D

D(s{p})

Dphos

)

Fig. 5. Highlight of the nodes and edges involved in the determination of the locally relevant context. The
first (left) and second (right) iterations are shown on story 3 from Fig. 2. The current node of each iteration
is shown in yellow with bold border. Past context nodes have a bold dashed border. Paths from past context
nodes to any node reachable by the current node are shown with thick green edges. Paths that are blocked by
an edit node that is incompatible with the edit from the past context node are shown with dashed red edges.
The locally relevant context obtained at the end of each iteration is written in thin font on the label of the
current node.

3.2.3 Globally relevant context Third, the globally relevant context is evaluated. The goal is to
harmonize what is considered relevant across all stories. Suppose an element of context which exists
in the past of two di↵erent stories, but is found irrelevant in the first story and locally relevant in the
second. Then, the first story must be revised, knowing that this given element of context is actually
relevant when considering the whole system.

To do so, the total possible context of each edit is first computed. It corresponds to any context
that was found locally relevant across all the edit nodes that represent a same edit among all stories.
Then, the globally relevant context of a given edit node is found as the elements from the total context
which exist in the past of that edit node within the story where it is found. Finally, elements of context
are removed if they are found globally relevant across all edit nodes that represent a same edit.

Fig. 6 shows the four stories now with edit nodes containing the globally relevant context associated
with each event. It turns out that the only relevant context is whether protein C was bound to kinase A
or B when it got phosphorylated. Looking back at the toy model, this is precisely what was expected.
Note that this context, the binding to A or B, was not locally relevant in story 3 as seen on Fig. 5. It
was instead added as globally relevant from stories 1 and 2. Also, the locally relevant context C(z[.])
from Fig. 5 was removed since it is equally present in all four stories and is hence not discriminating.

3.3 Quotient of contextualized stories

It is now possible to fold the contextualized stories from Fig. 6. Using edit nodes and their context
defined in the previous, we can now partition the nodes in a way that will preserve the information
propagation dictated by the model. Edit nodes across all stories are merged if they have the same
edit and the same relevant context. Event nodes are merged if they correspond to the same Kappa
rule and their target edit nodes also have the same relevant context.
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A binds C

C(x[1]),
A(x[1])

A phos C

C(z{p} x[1]),
A(x[1])

C binds D

D(z[1]),
C(z[1] x[2]),

A(x[2])

A phos D

D(s{p})

Dphos

B binds C

B phos C

C binds D

B phos D

D(s{p})

Dphos

A binds C B binds C

A phos C

C binds D

B phos D

D(s{p})

Dphos

B binds C A binds C

B phos C

C binds D

A phos D

D(s{p})

Dphos

Story 1 Story 2 Story 3 Story 4

C(y[1]),
B(y[1])

C(x[1]),
A(x[1])

C(y[1]),
B(y[1])

C(y[1]),
B(y[1])

C(x[1]),
A(x[1])

C(z{p} y[1]),
B(y[1])

D(z[1]),
C(z[1] y[2]),

B(y[2])

D(z[1]),
C(z[1] x[2]),

A(x[2])

D(z[1]),
C(z[1] y[2]),

B(y[2])

C(z{p} x[1]),
A(x[1])

C(z{p} y[1]),
B(y[1])

Fig. 6. The four stories from Fig. 2 annotated with relevant context on edit nodes. Introduction nodes were
removed for clarity.

Fig. 7, left presents the resulting quotient. There are two nodes representing rule "C binds D".
One corresponds to the case where C was priorly bound to A, and to other to the case where it was
bound to B. There is no way to read this graph by following a path that is not allowed by the model.

Fig. 7, right shows a more compact graph obtained by removing the contextual information about
events that we have used to get a more precise quotient. We consider this last graph as the correct
representation of the paths to the event of interest, as opposed to the two graphs from Fig. 3 which
both lead to a wrong interpretation.

Dphos

A binds C B binds C

A phos C B phos C

C binds D C binds D

A phos D B phos D

A binds C B binds C

C(x[1]),
A(x[1])

A phos C B phos C

C(z{p} x[1]),
A(x[1])

C binds D

D(z[1]),
C(z[1]

B(y[2])

A phos D B phos D

D(s{p})

Dphos

y[2]),

C(y[1]),
B(y[1])

D(z[1]),
C(z[1]

A(x[2])
x[2]),

C(z{p} y[1]),
B(y[1])

C binds D

Fig. 7. Quotient graph obtained after considering relevant context. Left) Full version of the graph.
Right) Compact version with edit nodes removed.
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4 Conclusion

This work describes a method to build a compact representation for the visualisation of causality
analysis results in rule-based modelling. A collection of stories provided by a current implementation of
causality analysis [3,4] is folded into a single quotient graph. The main challenge is to find a partitioning
of story events which maximizes compactness of the quotient graph without loosing important details
about how information propagates in the model. The appropriate partitioning criterion suggested here
is the relevant context, the context from an event’s past which remains useful in its future. By folding
stories based on their events type and relevant context, a quotient graph is obtained that faithfully
represents all the paths to an event of interest.

Scalability of the method is important since its true usefulness lies in its application to large
models. While rigorous optimization and benchmarking was not performed yet, we tested the current
implementation on a model of human cell signalling comprising about three thousand Kappa rules.
This model is considered large because representing it in a reaction-based setting, like in a Petri net,
would lead to a combinatorial explosion with millions of nodes. Calculation time of quotient graphs
for events of interest from this model is usually of the order of several minutes on an average personal
computer. Those graphs are typically easy to visualize with less than fifty ordered nodes. For cases
where the graph becomes larger and confusing to read, quantitative data from the model’s execution
can be used to prune away least impactful paths.

The story folding method reported in this paper is a milestone in a longer term objective to auto-
matically extract biological pathways from rule-based models. Other functionalities are planned to be
implemented within the KappaPathways [11] package to reach that goal. Those include counterfac-
tual analysis [12], the representation of inhibitions from negative influences and the ordering of events
participating in feedback loops.
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Abstract 
With Next Generation Sequencing becoming more affordable every year, NGS technologies asserted 
themselves as the fastest and most reliable way to detect Single Nucleotide Variants (SNV) and Copy 
Number Variations (CNV) in cancer patients. These technologies can be used to sequence DNA at very high 
depths thus allowing to detect abnormalities in tumor cells with very low frequencies. Multiple variant 
callers are publicly available and are usually efficient at calling out variants.  

However, when frequencies begin to drop under 1%, the specificity of these tools suffers greatly as true 
variants at very low frequencies can be easily confused with sequencing or PCR artifacts. The recent use of 
Unique Molecular Identifiers (UMI) [1,2,3] in NGS experiments has offered a way to accurately separate 
true variants from artifacts. UMI-based variant callers are slowly replacing raw-read based variant callers as 
the standard method for an accurate detection of variants at very low frequencies. However, benchmarking 
done in the tool¶s publication are usually realized on real biological data in which real variants are not 
known, making it difficult to assess their accuracy.  

We present UMI-Gen, a UMI-based read simulator for targeted sequencing paired-end data. UMI-Gen 
generates reference reads covering the targeted regions at a user customizable depth. After that, using a 
number of control files, it estimates the background error rate at each position and then modifies the 
generated reads to mimic real biological data. Finally, it will insert real variants in the reads from a list 
provided by the user. 
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Bioinformaticians are overwhelmed with high-throughput sequencing data. While they o↵er new
insights to decipher the genome structure they also raise major challenges to use them for daily clinical
practice care and diagnosis purposes as they are bigger and bigger. We implemented a software to
reduce the time to delivery for the alignment and the sorting of high-throughput sequencing data.
Our solution is implemented using Message Passing Interface and is intended for high-performance
computing architecture. The software scales linearly with respect to the size of the data and ensures a
total reproducibility with the traditional tools. For example, a 300X whole genome can be aligned and
sorted within less than 9 hours with 128 cores with no overhead compare with the original BWA-MEM.

The alignment is based on the original BWA-MEM [1] algorithm. Some features were added
to support multinodes and MPI-IO [3]. The main contribution of our software is the capability
to distribute the IO and alignment works over several computing nodes avoiding the creation of
intermediate files and the bottleneck of merging then in final step. The scalability is linear and a
significant speed-up can be obtained by adding more ressources in term of CPU and memory, for
instance by doubling the number of servers we divide by two the walltime.

The sorting algorithm implements a parallel bitonic sorting network and a parallel merge phase.
During the bitonic phase, the data is distributed to all CPUs and parallel jobs work together to sort
the SAM file. The results are also merged in parallel way via a Bruck [2] algorithm. In contrast to
the traditionnal merge-sort, the idle time and IO bottlenecks are avoided. When compared to the
traditionnal tools Samtools or Sambamba, the MPI tool results in a significant speed-up of six. Its
scalability is also linear.

In this paper, we propose an implementation of the NGS alignment and sorting that make an
e�cient usage of High-Performance Computing architectures. At the storage level, a parallel file system
(such as BeeGFs or Lustre) improves drastically the latencies when reading and writing concurrently
with the MPI-IO framework. At the computer node level, we introduce MPI inter-node communication
for a better synchronization and load balancing. The software is freely available on the Institut
Curie github repository (https://github.com/bioinfo-pf-curie/mpiBWA, https://github.com/bioinfo-
pf-curie/mpiSORT).
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Abstract Long reads and Hi-C have revolutionized the field of genome assembly as they

have made highly contiguous assemblies accessible even for challenging genomes. As hap-

loid chromosome-level assemblies are now commonly achieved for all types of organisms,

phasing assemblies has become the new frontier for genome reconstruction. Several tools

have already been released using long reads and/or Hi-C to phase assemblies, but they all

start from a set of linear sequences and are ill-suited for non-model organisms with high

levels of heterozygosity. We present GraphUnzip, a fast, memory-e�cient and flexible tool

to unzip assembly graphs into their constituent haplotypes using long reads and/or Hi-C

data. As GraphUnzip only connects sequences that already had a potential link in the as-

sembly graph, it yields high-quality gap-less supercontigs. To demonstrate the e�ciency of

GraphUnzip, we tested it on the human HG00733 and the potato Solanum tuberosum. In

both cases, GraphUnzip yielded phased assemblies with improved contiguity.

Keywords genome assembly, phasing, long reads, Hi-C

Introduction

The field of genomics is thriving and chromosome-level assemblies are now commonly achieved for
all types of organisms, thanks to the combined improvements of sequencing and assembly methods.
Chromosome-level assemblies are generally haploid, regardless of the ploidy of the genome. To obtain
a haploid assembly of a multiploid (i.e. diploid or polyploid) genome, homologuous chromosomes
are collapsed into one sequence. However, assemblers often struggle to collapse highly heterozygous
regions, which leads to breaks in the assembly and duplicated regions [1]. Furthermore, haploid as-
semblies provide a partial representation of multiploid genomes: ideally, multiploid genomes should
be phased rather than collapsed if the aim is to grasp their whole complexity [2].

The combination of low-accuracy long reads, such as Oxford Nanopore Technologies (ONT) reads
and Pacific Biosciences (PacBio) Continuous Long Reads (CLRs), with proximity ligation (Hi-C)
reads has made chromosome-level assemblies accessible for all types of organisms. The latest devel-
opment of PacBio, high-accuracy long circular consensus sequencing (CCS) reads (a.k.a. HiFi), is
now starting to deliver highly contiguous phased assemblies [3,4,5]. Hi-C sca↵olding is commonly
used in genome assembly projects to obtain chromosome-level sca↵olds. This approach relies on the
interaction frequency in the genome and these interactions are heightened between loci belonging to
the same chromosome [6]. Based on this principle, alleles can be associated using their interaction
frequencies.

A first approach to phase assemblies is called trio-binning and uses sequencing data from the in-
dividual and its parents to retrieve haplotypes [7]; yet this method is unavailable when the parents
cannot be identified, or for asexual species. Existing tools are able to use either long reads (Falcon-
Unzip [8], WhatsHap [9]) or Hi-C reads (Falcon-Phase [10], ALLHiC [11]) for phasing assemblies, but
they are limited to phasing local variants or well-identified haplotypes and are not suited for complex,
highly heterozygous genomes. WhatsHap takes as input a collapsed assembly and searches for alterna-
tive haplotypes. As collapsing haplotypes can be too di�cult for highly heterozygous regions, it seems
more intuitive to phase these assemblies de novo. FALCON-Unzip and FALCON-Phase o↵er this
alternative, yet they are dependant on the output of the FALCON assembler and cannot be combined
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with other assemblers.

We present GraphUnzip, a new tool to phase assemblies using long reads and/or Hi-C. GraphUn-
zip implements a radically new approach to phasing that starts from an assembly graph instead of
a set of linear sequences. In an assembly graph, heterozygous regions result in bubbles every time
the assembler is unable to collapse the haplotypes or to choose one of them. GraphUnzip ”unzips”
the graph, meaning that it separates the haplotypes by duplicating homozygous regions that have
been collapsed and partitioning heterozygous regions into haplotypes. This tool is based on a simple
principle that was implemented in many sca↵olders since SSPACE [12]: long-range data (mate-pair
reads, long reads, linked reads, proximity ligation...) provide information on the linkage between con-
tigs that can be used to group and orient them into sca↵olds. As GraphUnzip takes as input and
produces as output assembly graphs, it only connects contigs that are actually adjacent in the genome
and yields gap-less sca↵olds, i.e. supercontigs. GraphUnzip is compatible with any assembler that
produces an assembly graph. We tested GraphUnzip on the genomes of the human HG00733 and the
potato Solanum tuberosum. GraphUnzip is available at github.com/nadegeguiglielmoni/GraphUnzip.

Methods

Inputs

GraphUnzip requires an assembly graph in GFA (Graphical Fragment Assembly) format. The
Hi-C input is a sparse matrix, such as the one obtained when processing the reads with hicstu↵ [13].
hicstu↵ also provides a module to convert other file formats (e.g. cool, a common Hi-C format) to a
sparse matrix. The long reads are mapped to the assembly graph using GraphAligner [14].

Overview of GraphUnzip

In an assembly graph, contigs that are inferred to be adjacent or to overlap in the assembly are
connected with edges. However, some of these connections between contigs may be artefacts. To
discriminate correct edges from erroneous ones, GraphUnzip relies on long reads and/or Hi-C data.
These data are translated into interactions between contigs: the strength of interaction between two
contigs is defined as the number of long reads bridging both contigs when using long reads as input;
and as the number of Hi-C contacts between the two contigs when using Hi-C as input. In both cases,
a strong interaction is a sign of proximity on the genome.

GraphUnzip first builds one or two interaction matrices containing all pairwise interactions be-
tween contigs, depending on whether long-read data, Hi-C data or both are provided (Figure 1). In
the next step, GraphUnzip iteratively reviews all contigs and their edges. The strength of an edge
i is computed based on the strength of interaction between the contigs it connects. A high strength
supports the reality of the link, while a low strength may signal an artefactual edge. When a con-
tig has several edges at one of its extremities, these edges are compared in a pairwise fashion. This
comparison uses two user-provided thresholds: the rejection threshold TR and the acceptance thresh-
old TA, where TR < TA. Considering two edges X and Y and their respective strengths i(X) and
i(Y ), if i(X) < i(Y ), Y is considered strong; if i(X)/i(Y ) < TR, then X is considered weak, else,
if TR  i(X)/i(Y ) < TA, X is flagged as dubious. X is labelled as strong when i(X)/i(Y ) � TA.
The algorithm thereafter considers weak edges as artefacts that do not actually exist in the genome,
whereas strong edges represent true connections. If both long reads and Hi-C input data are provided,
strengths based on long reads are used first because they are more reliable locally, and strengths based
on Hi-C are only used if some edges are flagged as dubious.

Edges identified as weak in the previous calculation are removed. Then, every contig that has more
than one strong edge and no dubious edge at one end is duplicated as many times as the number of
these strong edges. Such contigs are typically collapsed homozygous regions that need to be present
in several copies to be included in every haplotypes. All the copies retain the edges of the original
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contig at its other end. This entails that the duplication of contigs creates many new (and potentially
artefactual) edges. Contigs that are unambiguously linked are merged in supercontigs that will be
handled as regular contigs thereafter.

When assessing the strength of two putative edges (S1,S2) and (S1,S3) connecting the supercontigs
S1, S2, and S3, the strength of these edges are calculated as the strength of interaction between contigs
in S1 and contigs present in S2 but not in S3 (and vice versa). For example, in the third step of Figure
1, when trying to associate supercontig a-b to either d-e or d’-f, only the interactions between the
supercontig a-b and the contigs e and f are considered. Interactions between the supercontig a-b and
the contigs d and d’ are not considered in the calculation because d and d’ actually originate from the
duplication of a collapsed region.

All contigs and edges are iteratively processed s times to phase the assembly, where s is a user-
provided parameter. Because extremely long contigs tend to share a significant number of Hi-C
contacts even if they are not adjacent, we observed that in extreme cases the algorithm could join
two chromosomes by their telomeric ends. The Hi-C matrix is used at the end of the process to de-
tect such chimeric connections in the assembly graph, based on low Hi-C interactions, and break them.

Homo sapiens HG00733 assemblies

We used HiFi, ONT and Hi-C reads from [15]. HiFi reads were assembled using hifiasm with the
parameter -l 0, and the resulting p utg assembly graph was used for downstream analyses. All HiFi
reads and the ONT reads longer than 30 kb were mapped to the assembly using GraphAligner with the
parameter -x vg. Hi-C reads were processed with hicstu↵ using the parameters --aligner bowtie2

--enzyme 200 --iterative. GraphUnzip was run with parameters --accept 0.10 --reject 0.05

--exhaustive --whole match --minimum match 0.8. All non-ambiguous paths in the GFA were
merged using Bandage. The assemblies were compared to the DipAsm reference [16] using QUAST
v5.0.2 [17] with the parameters -m 0 --eukaryote --large --min-identity 99.9.

Solanum tuberosum assemblies

HiFi, ONT and Hi-C reads published in [18] were retrieved from the NCBI Sequence Read
Archive with the Bioproject accession number PRJNA573826. The HiFi reads were assembled us-
ing hifiasm with the parameter -l 0, and the p utg assembly graph was used for downstream anal-
yses. All HiFi reads and the ONT reads longer than 25 kb were mapped to the assembly using
GraphAligner with the parameter -x vg. Hi-C reads were processed with hicstu↵ using the parameters
--aligner bowtie2 --enzyme MboI --iterative. GraphUnzip was run with parameters --accept
0.40 --reject 0.10 --exhaustive --whole match --minimum match 0.8. All non-ambiguous paths
in the GFA were merged using Bandage. To check the output of GraphUnzip, we mapped the published
assembly to the assembly graph using GraphAligner. We used calN50 (available at github.com/lh3/calN50)
to compute the NG50 against the published assembly size of 1.67 Gb [18]. BUSCO v4 [19] was run
with parameters -m genome --long against the dataset viridiplantae odb10.

Computational performance

RAM usage and CPU time were measured with the command /usr/bin/time -v on a desktop
computer with 128 GB of RAM and a i9-9900X 3.5 GHz processor.
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Fig. 1. Description of GraphUnzip: workflow of the program (left), interaction matrix (top right), and overview
of the algorithm to discriminate links (bottom right). This example algorithm analyzes the potential links
between the segments a, b, c, d, e, f, g. The red arrows represent the intensity of interactions between the
segments, computed based on the values in the matrix.
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Tab. 1. Assembly metrics of Homo sapiens HG00733 compared with the DipAsm reference.
Assembly GraphUnzip Size N50 NA50 Misassemblies CPU RAM
Reference - 5.9 Gb 27.8 Mb 27.8 Mb 84 - -
hifiasm - 5.5 Gb 397 kb 343 kb 9146 - -

ONT + Hi-C 6.2 Gb 1.5 Mb 1.2 Mb 8091 33min 46s 23.5 GB

Results

Homo sapiens HG00733

We compared the hifiasm + GraphUnzip assembly of the human HG00733 genome with a published
reference obtained using DipAsm, based on the N50, the NA50 and the number of misassemblies. The
N50 represents the contiguity of the assembly: it is defined as the length of the largest contig for which
50% of the assembly size is contained in contigs of equal or greater length. The NA50 is the N50 of
the assembly broken at every misassembly (compared to a reference). GraphUnzip increased the size
of the hifiasm assembly (from 5.5 Gb to 6.2 Gb), and the N50 rose as well (from 397 kb to 1.2 Mb)
(Table 1). The NA50 was improved while the number of misassemblies decreased in the GraphUnzip
supercontigs. Notably, the reference assembly size is only 5.9 Gb, while the GraphUnzip assembly
reaches 6.2 Gb, which is the expected size for a phased human genome.

We also tried an assembly of the HiFi reads with Flye, but the draft assembly was only 2.9 Gb,
little below half the expected size, which indicates that the haplotypes were nearly completely col-
lapsed. A good candidate assembly for GraphUnzip should have uncollapsed heterozygous regions,
as GraphUnzip is not able to retrieve a missing haplotype in collapsed heterozygous regions and can
only duplicate the collapsed region, leading in that case to a suboptimal result.

Solanum tuberosum

Tab. 2. Assembly metrics of Solanum tuberosum. The NG50 values were computed based on an estimated
genome size of 1.67 Gb.

Assembly GraphUnzip Size NG50
BUSCO

CPU RAM
Single Dup.

Reference - 1.67 Gb 66.1 Mb 21.6% 76.9% - -
hifiasm - 1.51 Gb 2.2 Mb 21.2% 77.9% - -

HiFi 1.69 Gb 3.7 Mb 7.1% 91.5% 16s 0.2 GB
ONT 1.67 Gb 3.4 Mb 6.8% 92.2% 52s 0.2 GB
Hi-C 1.69 Gb 5.6 Mb 7.8% 91.5% 38min 27s 11.5 GB
HiFi + Hi-C 1.69 Gb 4.9 Mb 9.4% 89.4% 39min 59s 11.5 GB
ONT + Hi-C 1.73 Gb 5.9 Mb 7.3% 91.8% 39min 10s 11.5 GB

We tested GraphUnzip on the diploid genome of the potato Solanum tuberosum RH89-039-16, for
which a phased assembly of 1.67 Gb [18] was recently published. We assembled the HiFi reads with
hifiasm and then ran GraphUnzip using the HiFi, ONT and/or Hi-C reads. The draft assembly was
1.51 Gb, and after phasing with GraphUnzip, the assembly size rose to 1.67-1.73 Gb (Table 2). In this
case, we compared the NG50s, a value similar to N50 but based on a reference genome size rather than
the assembly size. GraphUnzip increased the contiguity: from 2.2 Mb, the NG50 reached 3.4 to 5.9
Mb. The combination of both ONT and Hi-C reads yielded the highest NG50. Hi-C reads improved
the contiguity better than long reads. The overall BUSCO completeness of the GraphUnzip super-
contigs was slightly improved compared to the reference: 98.6-99.3% against 98.5% for the reference,
and the number of duplicated BUSCO features was higher as well (89.4-92.2% against 76.9%). We
mapped the published assembly to the GraphUnzip assembly graph obtained when using Hi-C and
ONT reads. We found that there were no di↵erences in phasing between the two assemblies. However,
some regions that were phased by hifiasm and GraphUnzip were collapsed in the published assembly.
This result, in conjunction with the higher number of duplicated features, indicates that GraphUnzip
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led to an improved phased assembly.

Computational performance

For both the human and Solanum tuberosum genomes, GraphUnzip required limited computational
resources as it ran in less than 1 hour on a single thread and used up to 23.5 GB of memory. For
Solanum tuberosum, the run time was also shorter when using only long reads (less than a minute).
The longer run time when using Hi-C reads was due to the building of the interaction matrix. As
this interaction matrix is outputted by the program, this file can be reused for other runs, which will
consequently finish faster. Therefore, users can try several sets of parameters to optimize the result,
with short runtimes.

Conclusion

GraphUnzip is a flexible tool that can phase assemblies of high-accuracy long reads with long
reads and/or Hi-C. A limitation of GraphUnzip is that it does not necessarily reach chromosome-level
assemblies like most Hi-C sca↵olders do, but it aims instead to produce more contiguous gap-less
supercontigs by fully exploiting assembly graphs. As genome projects now usually include long reads
and Hi-C to obtain chromosome-level assemblies, GraphUnzip can easily be integrated in assembly
projects to obtain de novo phased assemblies for non-model organisms.
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Host-associated and environmental microbiotas are complex ecosystems in which a variety of inter-
actions occur between microbial members. As the culture of all these microbes is impractical, omics
experiments and in particular shotgun metagenomics are the main sources of information to decipher
the web of interactions in these large communities [1]. The number of available metagenomes and the
methodological improvements in reconstruction of metagenome-assembled genomes (MAGs) makes it
possible to apply metabolic network modelling in microbiota [2]. However, the remaining imperfection
of automatically-generated data - both for reconstructed MAGs and reconstructed metabolic networks
- still impairs the applicability of such models.

In [3], we present Metage2Metabo (M2M), a pipeline dedicated to the metabolic screening of
large communities of microbes, and apply it to several use-cases and datasets in order to demonstrate
its versatility. M2M automatically reconstructs and screens the metabolic potential of thousands of
microbes, considered both individually and as a community, in order to evaluate the metabolic gain
brought by cooperative interactions. These metabolites that cannot be producible individually or
other sets of compounds can be used as an objective to identify minimal communities predicted to
sustain their producibility. As up to millions of equivalent minimal communities can exist due to
the combinatorics of the problem, we solve it using Answer Set Programming in order to retrieve
the key species (KS), that are all microbes occurring in at least one of such communities. We can
further distinguish KS by identifying those that occur in every minimal community, thereby targeting
the metabolic key players within the original microbiome. We illustrated our methods using various
genomic and metagenomic datasets. Applied to 1,520 high-quality draft reference genomes of the
human gut microbiota, we showed the screening potential of M2M and studied key species for several
categories of metabolic end-products. In addition, we compared the robustness of M2M predictions
on degraded MAGs demonstrating that M2M is applicable to metagenomics. Finally, we used M2M
to screen the metabolism associated to the gut microbiota of individuals in a disease context.

Functionally describe and reduce the complexity of large communities is a critical matter in the
journey towards a better understanding of microbiotas organisation. This work provides a step in that
direction by identifying functions and species of interest in microbial ecosystems.
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Abstract Shallow shotgun metagenomics has been recently suggested as a promising strat-
egy to study human microbiota, providing nearly identical taxonomic profiles than deep
shotgun metagenomics with a sequencing cost similar to metabarcoding. With shallow se-
quencing approach (typically <1M reads/samples), taxonomic profiles are directly built by
mapping reads on a catalog of reference genomes, without assembly step.

In the present study, we first used simulated data set to design a dedicated workflow in
order to obtain reliable taxonomic profiles from shallow sequencing reads. We propose a
novel data-driven filtering method based on machine learning techniques that largely out-
performed basic filtering methods. We then used this approach on 3 real data sets, covering
patients from several continents and clinical conditions. Even if one loses some informa-
tion like rare taxa, our results clearly show that shallow shotgun metagenomics is able to
correctly retrieve structures like di↵erences between groups of patients and diagnosis-like
classification.

Keywords Shallow shotgun metagenomics, Gut microbiota, Sequencing depth, Clinical
research

1 Introduction

Allowing culture-free analysis of microbial ecosystems, high throughput sequencing revolutionized
our comprehension of the role that plays human associated microbiota in health and disease. It is
nowadays a very active clinical research field, with thousands of studies carried out each year, covering
many diseases [1] [2] [3]. Two sequencing strategies emerged to study microbiota, and the choice
depends on the sequencing cost, the size of the cohort, the expected level of taxonomic resolution and,
when possible, functional annotation. On the one hand, metabarcoding, which consists in targeted
sequencing of a phylogenetic marker (often rRNA gene 16S for bacteria, ITS for fungi), is a very
cost-e�cient way to characterize diversity within and between samples and to obtain an approximate
taxonomic identification of microorganisms (often down to the genus level). On the other hand,
shotgun sequencing consists in sequencing all DNA material present in an environment, which allows
deeper taxonomic resolution (species, or even strain level), functional profiling (identification and
quantification of genes, metabolic pathways), and de novo assembly of uncultured organism genomes
as Metagenome Assembled Genomes (MAGs) [4].

Due to huge inter-patients variability and new insights into microbiome’s plasticity [5], clinical
studies need to include many patients [6], and have a longitudinal approach when possible, to ex-
tract reliable information. Despite the continuous drop in sequencing costs, metabarcoding is thus
often preferred to shotgun sequencing to carry out clinical studies, providing limited information and
hindering our comprehension of microbiota.

Shallow shotgun metagenomics has been recently suggested as an alternative [7], cost-competitive
to metabarcoding (allowing analysis of large cohorts) and providing nearly the same information
as deep shotgun sequencing. It consists in shotgun sequencing at much lower sequencing depth :
20M reads/sample were typically used to characterize a human gut microbiota samples with shot-
gun sequencing, while so called shallow shotgun metagenomics typically deals with fewer than 1M
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reads/sample, drastically reducing sequencing costs. This is made possible by assembly-free process-
ing of reads, thus requires an exhaustive genome reference catalog for the studied environment to
process mapping [8] [9].

In the present study, we aim to provide new insights towards usage of shallow shotgun metage-
nomics for taxonomic profiling of human gut microbiota, assessing the reliability of information that
can be recovered from shallow shotgun sequencing in comparison with deep sequencing. We first used
simulations to design and calibrate filters that e�ciently identify organisms genuinely present in the
mapping data providing reliable taxonomic profiles at each sequencing depth. We then applied this
approach to real data sets, and assessed information recovery at a sample level and a study level. Our
results show that some information is lost if we want to obtain reliable profiles (rare taxa are filtered
out to avoid having massive identification of spurious taxa), but that structures like di↵erences be-
tween groups of patients and diagnosis-like classification are very well conserved using shallow shotgun
metagenomics.

2 Material and Methods

2.1 Data

Simulated data sets. We retrieved taxonomic profiles of 19 human gut microbiomes from Qin
2014 [10] through curatedMetagenomicData [11], with a complexity of 98 ± 15 species per sample,
and species’ relative abundance ranging from 5.10�1 down to 10�6 (average 10�3). These profiles
were given using the NCBI’s taxonomy and were translated into UHGG’s taxonomy [12] by choosing
the UHGG species with the closest taxonomic assignation to the NCBI species (if several species
tied, one was chosen randomly), resulting in profiles with the exact same complexity, approximately
the same phylogenetic composition and some uncultured organisms (MAGs). UHGG genomes are
clustered into ”species clusters” (thereafter referred as species), that share at least 95% of identity
on 30% of the genomes, and one representative genome is chosen in each cluster for inclusion in the
mapping catalog. We generated profiles using either the species representative genome or using a
randomly selected genome belonging to the same species. The second scenario introduces noise in the
mapping data because of the intra-species diversity and corresponds to the more realistic case where
the genome is not necessarily in the database used for mapping. It is the one shown in the results. For
each sample, we used Grinder [13] to simulate 10M paired end reads (length of 2*125bp, insert size
normally distributed with an average of 500bp and standard deviation of 50 bp without sequencing
errors) and subsampled at 5 M , 1 M , 500 K, 100 K, 50 K and 10 K reads/sample.

Real data set. We used data from 3 clinical studies, for a total of N=439 samples covering patients
from several continents and clinical conditions (healthy patients, hepatic diseases at di↵erent stages,
cancer patients). Loomba et al. (2017) [14] compares the gut microbiota of patients su↵ering from
hepatic diseases at di↵erent stages (fibrosis vs NAFLD). Matson et al. (2018) [15] compares, among
patients having metastatic melanoma, those who responded to anti-PD-1 immunotherapy and those
who didn’t. Qin et al. (2014) [10] compares patients having liver cirrhosis and a group of healthy
controls, with a discovery and a validation cohort for both groups. We analyzed these data sets at full
depth and subsampled them to mimic shallow sequencing in the remainder.

2.2 Bioinformatics pipeline

Reads were pre-processed using trimmomatic [16], removing low quality reads and reads shorter
than 80 nucleotides. For real data sets, reads were also mapped to human genome to filter out host
contamination. Remaining reads were then mapped to UHGG catalog [12] using bwa mem [17] local
aligner. We also used bwa aln, and bowtie2 [18] in its end-to-end and local settings for comparison
in the simulated data, but we only present results for bwa mem as it resulted in a better trade-o↵
between overall mapping rate, false positive and multi-mapping rate.

Multi-mapping (ie reads that map to several genomes) occurs frequently when mapping shotgun
metagenomics reads to a catalog of reference genomes (26% and 42% of the mapped reads in simulated
and real data sets respectively), due to highly conserved genes and mobile elements notably. Thus,
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we split mapped reads into unambiguous reads that mapped to one genome only, and other reads.
For each genome identified, we retrieved the reads count (RC) and the fraction of the genome covered
(FC) by at least one read, using either all reads or unambiguous reads only (uRC and uFC), as well
as a specificity ratio (SR) defined by the number of unambiguous reads divided by the total number
of reads mapped to this genome.

In order to estimate species’ relative abundances, we first compute the representative genomes’
average coverage Cs = 1

`s

P
i ri,s, with `s being the length of the representative genome of species s

and ri,s the length of read i that is unambiguously mapped to s, and then we obtain the relative
abundance by normalizing across species to sum to 1 : As = CsP

j
Cj

. We refine this estimation by

reallocating the ambiguous reads by randomly assigning them to one of their hits, with a probability
proportional to the previously computed relative abundances.

2.3 Simulations analysis

Direct mapping of short reads on reference genomes produces false positives (genomes covered
by reads but not present) that need to be filtered out. We used simulated profiles, with known
composition, to determine the most e�cient way to classify the genomes into true positives (TP)
and false positives (FP). In order to assess methods and compare them to each other, we computed
the area under the receiver operating characteristic (ROC) curve (AUC) for this classification task,
using evabic R package. We also implemented an automated threshold search, that allows for a false
discovery rate (FDR = FP

TP+FP ) of at most 10%, and compared false negative (FN) rates at this
threshold across methods and sequencing depths.

We first evaluated how genomes features (RC, uRC, FC, uFC and SR) can be used independently
to classify the genomes, and then combined them to train classifiers. We used logistic regression, linear
discriminant analysis (LDA) and random forests (RF), to perform classification, with uRC, uFC, SR
and total sequencing depth as input features. Finally, we used a 4-fold cross validation process to
evaluate the performance of these methods and determine suitable thresholds for each method and
sequencing depths.

2.4 Real data sets analysis

We analyzed real data set using (1) RF-based filters fitted on the simulations data and thresholds
that control FDR at each sequencing depth, and (2) a basic filtering that discards all species with a
relative abundance beyond 10�4, FC beyond 10�2 or uFC beyond 10�4. This filtering is inspired by
what was done in [8] and corresponds to currently used methods with a quite permissive threshold
due to low sequencing depths on which it will be applied.

We evaluated ↵-diversity using species richness and Shannon diversity, and �-diversity using Jac-
card distance and Bray-Curtis dissimilarity index using phyloseq [19]. In order to assess the impact of
sequencing depth on taxonomic profiles, we evaluated the correlation between subsampled and deep ↵-
diversity measures using Spearman and Pearson correlation as well as the correlation between species
relative abundance at full depth and shallower depths. We also measured the distance between low
depth samples and their full depth counterpart. Finally, for each data set, we evaluated the di↵erences
between groups of interest, according to the sequencing depth, at di↵erent levels:

— di↵erences in ↵-diversity between groups, through a Wilcoxon test using di↵erent metrics de-
scribed earlier,

— structure in the �-diversity matrix, through a PERMANOVA analysis using di↵erent metrics
described earlier,

— biomarker discovery using a Wilcoxon test with Benjamini-Hochberg correction that shows
di↵erentially abundant species,

— patients’ classification in their group of interest, using random forests trained on taxonomic
profiles, with a feature selection step as performed in [14].

In order to perform unbiased comparison of p-values and AUCs across sequencing depths, we used
only samples having at least 10M high quality reads per sample for Loomba-2017 (N = 77), Matson-
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2018 (N = 39) and 5M reads for Qin-2014 (N = 235, we reduced maximum sequencing depth to
include more patients).

3 Results

3.1 Filters design and performance on simulated data

Our raw mapping data from simulations showed that a small number of reads (8% of unambiguously
mapped reads) are mapped to an unexpected genome, resulting in a great number of false positives
genomes (FDR = 91% prior to any filter). The basic (threshold-based) filtering technique yielded
in overall FNR = 0.39 and FDR = 0.45. We sought optimal thresholds on read counts (RC), but
it appeared to be sub-optimal (AUC = 0.75). Using genomes’ fraction covered (FC) to determine
such a threshold was better (AUC = 0.85), and retrieving only unambiguous reads to compute this
statistics enhanced the classification (AUC = 0.856 using uRC, and AUC = 0.896 for uFC, see table 1)
thus was used for the following. As seen on figure 1A, a threshold based on uFC and/or uRC values,
which would correspond to horizontal and/or vertical line to discriminate TPs and FPs, is suboptimal
as it would miss the long tail of genomes with low uRC but comparatively high uFC values. These
results motivated our attempt to train classifiers able to take benefit from this pattern. To train such
classifiers, we used uRC, uFC, SR, as well as sequencing depth to predict genomes’ status (present or
absent).

Fig. 1. Simulations results: (A) Unambigous fraction covered (uFC) and unambiguous read counts
(uRC) of genomes present in the expected profiles (TPs, blue points) or absent (FPs, red points).
(B) Distribution of FN species according to their relative abundances in the expected profiles, using
RF-based filters with a 10% FDR on the testing set of cross validation. The dot line represents the
distribution of all expected species.

method
AUC FN rate at threshold

training testing training testing
uRC 0.856 0.883
uFC 0.896 0.580

LDA 0.944± 0.002 0.944± 0.006 0.391± 0.010 0.391± 0.025
Logistic regression 0.955± 0.002 0.955± 0.006 0.386± 0.012 0.387± 0.032
Random forest 0.999± 0.0001 0.969± 0.007 0.017± 0.002 0.291± 0.040

Tab. 1. Classification of mapping hits in present and spuriously identified species : area under ROC curves

and false negative rates when threshold is set to tolerate 10% FDR. For machine learning based methods, these

measures are split into training and testing sets, using a 4-fold cross validation.

We can see on table 1 that sophisticated classifiers largely outperform basic filtering. LDA and
logistic regression perform similarly, and yield nearly identical results in training and testing in the
cross validation process, highlighting very good generalization capabilities. RF appeared to be the
best method, yielding in a nearly perfect classification in training set, and still better than others in
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the testing sets; RF will thus be used in the remainder. When setting a threshold that control the
FDR at 10%, we can see the interest of refining this classification, to drastically lower the FN rate,
although it remains quite high in the test samples.

We further characterized the information loss in the context of shallow sequencing metagenomics
by plotting the distribution of expected relative abundances of species that were absent in profiles
with respect to the sequencing depth, as seen on figure 1B, using RF-based filtering. We can see
clearly the inflation of FN while lowering sequencing depth, but we can also notice that, as expected,
the populations that are lost are relatively rare. For instance, at 500K reads/sample, all populations
with relative abundance greater than 10�2 were detected.

While focusing on TPs, we noticed that Pearson correlation between expected and estimated
species relative abundances went up from ⇢ = 0.54 to ⇢ = 0.60 by reallocating ambiguous reads.

3.2 Performance on real data sets for taxonomic profiling

Applying the RF-based filters on real data sets resulted in high quality profiles, with an average
diversity of 128±66 species per sample at full depth, which gradually decreased with sequencing depth,
down to 45± 21 at 500K reads/sample for example (fig 2A). In comparison, basic filtering were more
permissive, producing profiles with increased diversity and more resilient towards reduced sequencing
depths (fig 2D). The Shannon diversity index (fig 2B,E) was much less impacted by sequencing depth,
indicating that the species lost at low sequencing depth were mostly rare ones. Down to 500K reads per
sample, the correlation between full depth and subsampled Shannon indices was nearly perfect using
basic filtering and remained very high with RF-based filters. Distances between subsamples and their
reference, defined as the corresponding sample at full depth, gradually augmented when decreasing the
sequencing depth, and these distances were much more important using RF-based filters than basic
filters (fig 2C,F, both graphs share the same scale), and showed high replicability across data sets.

Fig. 2. Comparison between full depth and subsampled profiles for samples from the 3 data sets
considered : richness observed, Shannon diversity and Bray-Curtis distance between subsampled data
and reference (full depth data) using RF-based filtering (A, B and C respectively) and basic filtering
(D, E and F respectively)
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Comparison between filtering strategies highlighted that filtering plays a key role while dealing with
shallow metagenomics data. If taxonomic profiles were less impacted by sequencing depth using basic
filters than RF-based filters, we know according to our simulations that lots of false positives are present
in the profiles, which introduces an important noise and jeopardizes the biological interpretation of
results.

3.3 Performance on real data sets for patients stratification

Fig. 3. Di↵erences between patients groups in di↵erent studies : significance of inter-group di↵erence
regarding Shannon diversity index (A), PERMANOVA analysis (B). AUC corresponding to random
forest classification (C) was performed in Loomba-2017 and Qin-2014, with a split between discovery
and validation cohorts in Qin-2014 as performed on the original paper of this study.

Here, we assess the robustness of biological signal found in the di↵erent data sets towards se-
quencing depth. As expected according to previous results, di↵erences in ↵-diversity between groups
were maintained using shallow sequencing : p-values were concordant across sequencing depths (see
Fig. 3A), with a strong di↵erence in Qin-2014 data set, a slight di↵erence between groups that is
not significant in Loomba-2017 and no di↵erences between groups in Matson-2018. PERMANOVA
analysis led to similar results (Fig. 3B), showing that the structure of the matrix distances between
samples is very marginally impacted by sequencing depths. The p-value regarding Loomba-2017 on
RF-based filtered data increased, but stayed significant, even under 1M reads/sample, traducing the
absence of key populations at such sequencing depths. Out of the 7 di↵erentially abundant taxa in
Loomba-2017 with RF-based filtering found at full depth (FDR < 0.1), 5 taxa were still identified
at 1M reads/sample and 4 at 500K reads/sample. Basic filtering, allowing more taxa in the profiles,
identified more di↵erentially abundant taxa (19 at full depth, 12 at 500K reads/sample) but the re-
liability of these taxa is questionable. As previously discussed, signal was much more important in
Qin-2014 data set: 25 di↵erentially abundant taxa were identified at full depth with RF-based fil-
tering (FDR < 0.05 in both discovery and validation cohorts), 13 taxa at 1M reads/sample and 9
at 500K reads/sample. Again, basic filtering allowed to identify more taxa (124 at full depth, 72 at
500K reads/sample). Finally, classification of patients using RF was performed in Loomba-2017 and
Qin-2014 (see Fig. 3C). In Loomba-2017, we could perform a better classification using basic filtering,
with an AUC similar to full depth AUC down to 500K reads/sample, while it gradually decreased as
sequencing depth decrease using RF-based filters, due to some key taxa for the classification being
lost. On Qin-2014 data set, we could perform a very good classification on both discovery and vali-
dation cohorts even at low sequencing depth, with performance very stable using basic filtering down
to 100K reads/sample using basic filtering and that gradually decreased with RF-based filters under
5M reads/sample.

4 Discussion

Direct mapping of reads on catalogs of reference genomes was previously suggested as the most
suitable way to build taxonomic profiles from shallow sequencing metagenomics data [7] [9], as it
produced nearly identical taxonomic profiles across sequencing depths. Our simulations highlighted
the need to refine filters on genomes identified by such mapping, and to perform depth dependent
thresholds to obtain reliable profiles at each sequencing depth. This step is crucial to prevent mislead-
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ing interpretations and to provide trustful biological knowledge. Controlling the false discovery rate
(FDR) in the taxonomic profiles had the direct consequence of decreasing the number of identified
species, especially at low sequencing depth. The benefit of random forest-based filters, and to a lesser
extent other machine learning based models tested, over simple filtering based on species features
independently (read counts and fraction covered, considering all reads and unambiguous reads only)
was remarkable, allowing to identify more species and rarer ones for equivalent FDR. The application
of such techniques, as they rely on a learning step, is by definition limited to the training conditions.
In our case, usage of our random forest-based model to filter genomes should be limited to ecosystems
with similar complexity, sequenced with short reads at depth included in the range used for the train-
ing and mapped to a catalog similar to representative genomes of UHGG in terms of completeness,
intra and inter species diversity.

On the three real data sets considered, our analysis showed that di↵erences between groups of
patients observed at full depth where still recovered at low sequencing depth. Permissive and depth-
independent filtering, as performed in previously published papers on shallow shotgun metagenomics,
allowed a little improvement in structure recovery than our stringent random forest-based filters: these
structures were less sensible to the noise introduced by spuriously identified species in the profiles using
basic filtering, than to the removal of key species induced by our stringent random forest-based filter.

Overall, our results show that (1) one needs to perform stringent and depth-dependent filters to
obtain reliable profiles in shallow sequencing data, (2) resulting taxonomic profiles are limited to most
abundant taxa in shallow sequencing context, and (3) shallow shotgun metagenomics can be a suitable
approach to perform diagnosis-like classification of patients even if further investigations should be led
to assess generalization capability and interpretability of signatures obtained with shallow sequencing.

Shallow shotgun metagenomics requires an exhaustive reference database regarding the studied
ecosystem to build taxonomic profiles. Although it produced reduced complexity profiles if we want
to ensure reliability of results, it appeared to be a very good alternative for clinical studies, and
su�cient to classify patients, when discrimination between groups is expected to be important and to
rely on relatively dominant taxa. Therefore, it can be profitable in such cases to favour the number of
patients included or to introduce a longitudinal aspect, rather than per sample sequencing depth. For
other body sites (vaginal, oral or skin microbiota) host contamination should be taken into account
when determining sequencing depth, as host reads will be discarded. Shallow shotgun metagenomics
could also be used to perform functional analysis, for example for coarse grain identification of family
of genes (like KOs), as the sequencing depth could not allow the identification of very specific genes
and SNPs that require assembly, such as antibiotic resistance.
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aQd e[SORUe WheLU dLYeUVLW\, BLRLQfRUPaWLcV, VROXPe 36, IVVXe SXSSOePeQW_2, DecePbeU 2020,
PageV L651±L658, hWWSV://dRL.RUg/10.1093/bLRLQfRUPaWLcV/bWaa792

HRUL]RQWaO JHQH WUaQVIHU (HGT) LV a PaMRU VRXUcH RI YaULabLOLW\ LQ SURNaU\RWLc JHQRPHV. TKLV
HYROXWLRQaU\ SURcHVV LV a VLJQLILcaQW VRXUcH RI JHQH QRYHOW\ [1] aQd aOORZV PLcURbHV WR adaSW
WR QHZ HQYLURQPHQWV RU WR RbWaLQ QHZ SaWKRJHQLc caSabLOLWLHV [2].

RHJLRQV RI JHQRPH SOaVWLcLW\ (RGPV) aUH cOXVWHUV RI JHQHV ORcaWHd LQ KLJKO\ YaULabOH
JHQRPLc UHJLRQV. MRVW RI WKHP aULVH IURP HGT aQd cRUUHVSRQd WR JHQRPLc LVOaQdV (GIV). AV
GIV caUU\ VR PaQ\ JHQHV RI LQWHUHVW, WKH\ KaYH bHHQ KHaYLO\ VWXdLHd aQd cRXQWOHVV PHWKRdV
KaYH bHHQ dHVLJQHd WR dHWHcW aQd aQaO\VH WKRVH SaUWLcXOaU UHJLRQV RI PLcURbLaO JHQRPHV [3].
TKH VWXd\ RI WKRVH UHJLRQV aW WKH VSHcLHV OHYHO KaV bHcRPH LQcUHaVLQJO\ dLIILcXOW ZLWK WKH
dHOXJH RI JHQRPLc daWa. TR daWH, QR PHWKRdV aUH aYaLOabOH WR LdHQWLI\ GIV XVLQJ LQIRUPaWLRQ
IURP KXQdUHdV RI JHQRPHV WR H[SORUH WKHLU dLYHUVLW\ aQd LdHQWLI\ WKRVH WKaW VKaUH WKH VaPH
JHQRPLc cRQWH[W.

WH SUHVHQW KHUH WKH SaQRGP PHWKRd WKaW SUHdLcWV RGPV XVLQJ SaQJHQRPH JUaSKV PadH RI
aOO aYaLOabOH JHQRPHV IRU a JLYHQ VSHcLHV [4]. IW aOORZV WKH VWXd\ RI WKRXVaQdV RI JHQRPHV LQ
RUdHU WR accHVV WKH dLYHUVLW\ RI RGPV aQd WR SUHdLcW VSRWV RI LQVHUWLRQ. IW JaYH WKH bHVW
SUHdLcWLRQV ZKHQ bHQcKPaUNHd aORQJ RWKHU GI dHWHcWLRQ WRROV aJaLQVW a UHIHUHQcH daWaVHW. IQ
addLWLRQ, ZH LOOXVWUaWHd LWV XVH RQ PHWaJHQRPH aVVHPbOHd JHQRPHV b\ UHdHILQLQJ WKH
bRUdHUV RI WKH OHXX WRNA KRWVSRW, a ZHOO-VWXdLHd VSRW RI LQVHUWLRQ LQ EVcheUichia coli [5].
SaQRPG LV a VcaOabOH aQd UHOLabOH WRRO WR SUHdLcW GIV aQd VSRWV PaNLQJ LW aQ LdHaO aSSURacK
IRU OaUJH cRPSaUaWLYH VWXdLHV. TKH SaQRGP PHWKRd KaV bHHQ LPSOHPHQWHd LQ WKH
PPaQGGOLLN SaQJHQRPLc VRIWZaUH VXLWH (KWWSV://JLWKXb.cRP/OabJHP/PPaQGGOLLN).
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deployment  

The use of a bioinformatics pipeline as a tool to support diagnostic and theranostic decisions in the 

healthcare process requires the definition of detailed development workflow dedicated to daily production. 

Therefore, we present biogitflow as a protocol that describe step-by-step all the command lines and actions 

that the developers have to follow. Our protocols capitalized on the two powerful and widely used tools git 

and GitLab, and are based on gitflow, a well-established workflow in the software engineering community. 

They address two use cases: a nominal mode to develop a new feature in the bioinformatics pipeline and a 

hotfix mode to correct a bug that occurred in the production environment. The protocols are available as a 

comprehensive documentation at https://biogitflow.readthedocs.io. 
In addition to the common development workflow, we propose geniac as a more specific set of coding 

conventions and tools from the prototyping step to production operations of bioinformatic pipelines using the 

workflow manager Nextflow. With the idea of being as less as invasive for the different expert communities 

(bioinformaticians, statisticians, software engineers, data managers, core facility engineers), those guidelines 

and utilities aims to reduce the overall development cycle, provide portable pipelines with containers (docker, 

singularity, …) and automatize whenever possible the building of containers. One of the main concepts of this 

approach is the one container per tool strategy which have several advantages compared to the usage of a 

single development or production environment for a bioinformatic pipeline. A detailed documentation along 

with support tools for development and deployment are respectively accessible at 

https://geniac.readthedocs.io/en/latest/intro.html and  https://github.com/bioinfo-pf-curie/geniac. 
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The sequencing deYices deYeloped b\ O[ford Nanopore Technologies (ONT) produce long DNA
sequence (> 200 kb) and full-length RNA. Sequencing and primar\ data acquisition are driYen b\ the
MinKNOW softZare, deYeloped b\ ONT. MinKNOW stores the raZ signal data as Fast5 files. Basecalling is
then performed either during or after the acquisition step. Basecalling is usuall\ achieYed b\ the program
Gupp\, the official ONT basecaller. The output sequence reads are stored in FASTQ or Fast5 format.
MinKNOW produces a Qualit\ Control (QC) report as a PDF file at the end of the run. HoZeYer this report
onl\ proYides estimated information as it is based on non-basecalled and non-demultiple[ed data. In
addition, the metrics and scales that Zere proYided b\ MinKNOW Zhen Ze started RNA-Seq applications in
2016 Zere not appropriate (unsuitable scales for RNA - Zhich has been fi[ed since - and no barcode
handling). It Zas thus necessar\ to deYelop a dedicated QC tool, fle[ible enough to handle both RNA and
DNA sequencing.

The first Yersion of ToulligQC is freel\ aYailable since 2017, and used in production in our Genomics
core Facilit\. It alloZs users to quickl\ estimate the qualit\ and homogeneit\ of their samples before running
further anal\ses. Eas\ to use, this tool proYides a detailed graphical output about the qualit\ of Nanopore
runs and e[plorator\ data anal\sis, in the same spirit as the Zell-knoZn FastQC program for short reads [1].

We introduce ToulligQC 2, a neZ major Yersion of our QC softZare. ToulligQC 2 produces an improYed
HTML report Zith st\lish and interactiYe plots obtained Zith the Plotl\ [2] librar\. The report contains
e[haustiYe information about the sequencing run, basecalling and demultiple[ing steps, such as: read count
and length distributions, homogeneit\ of the run, location of potential floZ cell spatial biases, statistics about
pass and fail reads, PHRED score distribution and densit\ distribution across read t\pes, length/speed/qualit\
and number of sequences oYer sequencing time, length/qualit\ and read counts for each barcode. In addition
to neZ graph t\pes, all plots Zere qualitatiYel\ improYed, and some of them proYide alternatiYe Yisualisation
mode (e.g., bo[plot and Yiolin plot).

ToulligQC 2 has a reduced memor\ footprint and is faster (feZ minutes on a laptop) than the preYious
Yersion. To facilitate interpretation of the graphs, each plot displa\s an ³info´ icon directl\ linking to the
online help page on GiWHXb [3].

Because ONT protocols and bioinformatics tools are constantl\ eYolYing, ToulligQC 2 supports all
Yersions of Gupp\ and the latest sequencing protocols. It can be used Zith all the O[ford Nanopore
sequencing deYices (MinION, GridION, PrometION), and remains compatible Zith both 1D and 1D2

chemistries. It takes as input the sequencing summar\ file generated b\ the Gupp\ basecaller and the
sequencing telemetr\ file, if aYailable.

ToulligQC 2 is an oSen VoXUce softZare published under GPL3 and CeCILL licences. It can be freel\
doZnloaded on GiWhXb [3], as a DockeU image (genomiquepariscentre/toulligqc), and as a P\P\ Sackage [4].
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Abstract Protein-protein interactions play an important role in cell biology. Proteomics and

related techniques (phosphoproteomics,  transcriptomics)  are providing experimental  data at
large scale and increasing pace. However, this mainly results in list of proteins for which direct

interactions is not  known. Structural  biology can help in decreasing the gap between large
scale studies and precise annotation of the possible physical interactions.  Here we describe

SLiMAN, a dynamic web software devoted to the analysis of protein-protein interactions (PPIs)
involving binding of Short Linear Motifs (SLiMs) onto structured protein domains. This open

the road for deeper understanding of the protein networks at play in various biological issues
such as cancers.

Keywords Peptide-domain interaction, SLiM, comparative modeling, exploration

1. Introduction

Multiple protein-protein interactions (PPI) networks play key cellular roles, regulating protein expression,
cell  signaling  and  cell  behavior  [1,2].  Experimental  interactomic  studies  are  now  unraveling  potential
partners at high pace and sub-proteomic level. Interactomic analysis are usually performed using a flagged
protein serving as a bait  to  capture its  interacting partners,  followed by an identification process (mass
spectrometry, western-blot,…). The resulting interactants are mostly displayed as a list of identified proteins,
annotated according to their biological function but this rarely lead to build the underlying PPI network. The
main  drawbacks  of  most  identification  processes,  is  the  absence  of  knowledge  of  the  true  physical
interactions.

It is known that many of the biological processes are performed by interactions through short linear motifs
(SLiMs) with structured protein domains[3]. The Eukaryotic Linear Motif resource (ELM [4]) is a reference
database  for  SLiM  annotation  and  prediction.  From  3559  publications,  dealing  with  up  to  136  non-
homogenously methods, this database gather 289 manually curated SLiM classes. Classes are defined by the
signature – or patterns - of the binding motifs which are also associated with interacting and structured
domain as annotated from the Protein Familly (Pfam) database [5].

The ELM database is now largely known and used by the community to predict SLiM mediated PPI for
each protein. The main difficulties of such analysis, is the number of false positive matches obtained from
the ELM regular expressions and also the huge number (often over 100) of predicted interaction motif for a
given protein.

More frequently found in intrinsincly disordered regions of proteins or in external accessible loops, SLiMs
can be considered to act as peptides, that bind onto a target structured domain [6]. For this reason, the current
state of the art for SLiM predictions also includes additional features, such as prediction of the disorder state
of the SLiM. The software IUpred2[7] is often used to predict the probability for a given amino-acid to be in
a disordered part of a protein. Still, the analysis of a given datasets for an interactomic analysis is leading to a
huge number of matches. Systematically excluding SLiMs with high probability or predicted as too ordered
(IUpred < 0.5) may exclude frequent SLiMs (e.g.: LIG_WD40_WDR5_VDV_2) and others that are more
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structured (e.g.: TRG_NES_CRM1_1). Currently, performed on one protein at a time, this constitute a huge
burden when one is analyzing an interactomic output made of hundred(s) of proteins.

Analyzing interactomic results aim to rebuild the PPI network to enravel the mechanisms of biological
pathways/processes,  possibly at  a  molecular level.  PPI network reconstruction is  a  challenge,  and some
databases are devoted to help such a task. The STRING [8] database, well appreciated by the community,
combines genetic interactions, text mining, text association, predicted and experimental PPI databases, but it
does not provide clues on the direct physical  interactions involved in the corresponding (sub-)networks.
Similarly PPI databases, such as the Biological General Repository for Interaction Datasets (BioGRID[9])
gather the results of multiple interactomics studies, but are also lacking structural information.

Interactions based on domain-domain interactions can be predicted using structural information extracted
for the PDB and the resulting network can be displayed. This is now made available through the web server
Interactome3D [10]  or  Proteo3Dnet  [11].  The  latter  is  devoted  to  the  modeling  of  PPI  from structural
information, and also from some ELM information. However, motif probability is not taken into account and
the IUpred2 exclusion parameter is set very high (>0.95), which dramatically reduce the number of predicted
SLiM mediated interactions. In addition, generated models are made for domain-domain interactions, leaving
the motif-domain interaction structure unknown. Rarely interactomics studies include thorough predictions
of useful SLiMs for PPI analysis although high throughput predictions have been implemented[12]. Indeed,
interactive analysis of potential motif-domain interactions is still lacking automation for systematic study.

Here,  we  describe  SLiMAN  (Short  Linear  Motif  ANanlysis),  a  webserver  devoted  to  analysis  of
interactomic results from SLiM interactions. This new tool integrates information from multiple databases
related to related to sequence (UniprotKB[13], Pfam, ELM), post-translational modifications (PTM) from
PhosphoSitePlus® [14],  structural  (PDB[15])  and experimental  PPI  (BioGRID) data  as  well  as  tools  to
compute  disorder  region  probability  (IUpred2),  sequence  alignment  (MAFFT[16],  BLAST[17])  and
structural homology models (SCWRL3[18]). This dynamic webserver (http://sliman.cbs.cnrs.fr) allows one
to  analyze  interactomic  PPI  mediated  by  SLiMs  in  an  interactive  manner.  By  playing  with  various
parameters, users are able to dig into the predicted data and build structural models for potential peptide-
domain interactions, using a large set (5064) of closely related structural templates extracted from the PDB.
Hence,  a  more  precise  picture  of  the  corresponding  network  of  protein-portein  interactions  can  be
discovered. Such an annotation opens the road for further experimental validation using for example directed
mutagenesis.

2. Material and Methods

2.1. Protein Annotations

UniprotKB is used to gather protein sequences restricted to “reviewed” entries, which corresponds to 564
277 entries (20 396 human), in the last update of UniprotKB (feb 2021). Additional domain annotation is
directly extracted from Pfam (domain boundaries and descriptions) for the corresponding sequences.

From the ELM database, class names, interaction domain types (Pfam annotation), regular expression and
E-value are extracted for SLiMs analysis. In the current release, a total of 289 classes are defined. ELM
experimental  instances,  ones  that  are  used for  the class regular expression definition,  are also included,
allowing fast validation for known interactions.

The  PhosphoSitePlus®  (PSP)  database  for  post-translational  modifications  (PTM),  is  integrated  to
pinpoint  locations of acetylation,  methylation,  O-GalNAc, O-GlcNAc, phosphorylation,  sumoylation and
ubiquitination sites over the amino acid sequence, for 46 096 proteins (from which 18 021 are humans).

2.2. Disorder Predictions

IUpred2 is used to predict disorder along the amino-acid sequence of a protein. The disorder scores (DS)
(ranging from 0 – most order - to 1 – most disordered) are predicted at the residue level and includes several
predictors;  local  disorder  (short  and long window size),  presence of  structured domain (short  and  long
windows) and ANCHOR2 (probability to be part of an interacting segment). The final scores attributed to the
motif are obtained by averaging the scores over the residues constituting a given motif. An additional binary
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value is computed (StrictDisorder). It is set to 1 if all residues from a motif have their short and long DS
predictions above the 0.5 (else 0).

2.3. Protein-protein Interaction Data

For complementary source of information, SLiMAN intergrates the lastest release (current 4.3.195) of the
BioGRID dataset,  from which  only  physical  interactions  were  retained,  and  splited  into  low and  high
throughput experiments. The mapping between Uniprot entry names and BioGIRD data is achieved using the
Uniprot mapping API (https://www.uniprot.org/uploadlists/).

2.4. Structural Support Extraction

For each of the possible 291 ELM/PFam associations, PDB is parsed in search for structural information,
using the pdb_pfamA_reg database to select the corresponding domain chains. For each referenced domain
chains, other chains are converted to FASTA format, and associated ELM regular expressions are used to
parse the sequences. During the FASTA conversion, modified residues (MLZ, MLY, M3L, ALY, SEP, TPR,
MSE, MNN, DA2, SEC, TPO and PTR) found in the structure are converted to the one-letter code of the
corresponding unmodified amino-acids (e.g.: SER for SEP). To check actual peptide-domain interaction, Cα
from residues that matched the regular expression must be found under a 10 Å threshold from any atoms of
the domain chain, and the chain containing the matched motif should be a peptide shorter than 35 residues.
In this case, we avoid most crystallographic artefacts. Then, contact distances bewteen residues belonging to
the peptide-domain interface are computed to split residues in 4 distance categories (> 7Å, < 7Å, < 5.5Å and
< 4Å). Distance categories are then converted into sequences of contact-scores (respectively 0, 1 ,2 and 3),
allowing a one-dimention encoding of the interface over the sequences of the domain and the peptide. After
template extraction, domain amino-acid sequences are placed in a FASTA file and the BLAST® database
generator (makeblastdb) is used to setup the corresponding blastable database of the domains, for future
alignment queries.

2.5. Sequence Alignments

Alignments between the domain sequence and template structure sequence is performed by two software.
MAFFT is used with the local-pair  alignment option,  limited to 1000 max-iterations (L-INS-i).  BLAST
(blastp) is used with the pre-computed blastable databases, previously described.

For peptide alignments, only MAFFT is used. To limit mis-alignment of parts of the peptides in the multi-
alignment process, the gap opening and extention penalty options are increased to 10 and 0.2 respectively.

2.6. Alignment Metrics

Five different alignment metrics are computed to identify the suitable templates for comparative modeling.

Sequence Identity (%Ident), corresponding to the sum of identical aligned amino acids devided by the
number of aligned amino-acids.

Query  coverage  (%QueryCoverage),  corresponds  to  the  sum of  aligned  amino  acids  from the  query
devided by the query length, and represent the percentage of the query amino-acids that will be modeled.

Template  coverage  (%TemplateCoverage),  corresponds  to  the  sum  of  aligned  amino  acids  from  the
template devided by the template length, and represent the percentage of the template amino-acids that will
be used for the modeling.

Contact conservation score (CCS), corresponds to the sum contact-scores of aligned amino acids from the
template. This metric allows fast discrimination of alignments that will lead to peptide-domain interactions.

These metrics help faster discrimination of optimal sequence-structure alignments.

2.7. Comparative Modeling

Tri-dimension model of the motif-domain interaction, can be built from the sequence structure alignment
computed by MAFFT and BLAST®. Only aligned amino-acids are used for the modeling by SCWRL 3.0,
with amino-acid backbone atoms and side-chains of strictly conserved residues kept fixed. Modeling of the
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selected complex is then preformed in three steps. On the first step, the queried domain is modeled, using the
original extracted domain as template and the peptide as constraint to model domain substituted amino-acids
side  chains.  Then,  the  peptide  model  is  generated  using  the  previously  generated  domain  model  as  a
constraint.  The  domain  and  the  peptide  models  are  then  combined  to  build  the  final  peptide-domain
complexe.

2.8. SLiMAN Workflow

From a simple list of Uniprot accession numbers or entry names, SLiMAN will analyze the data with 3
successive  levels.  First,  possible  ELM/Pfam pairing  are  highlighted.  Then,  for  each  hit  prediction,  the
corresponding sequence  can  then  be  aligned to  matched templates  and  used  for  comparative  modeling
interactively (Fig 1.).

Fig 1. SLiMAN workflow annotated with used databases and software for each steps; SLiM Interaction
Prediction (SLiMIP), SLiM Interacting with Domains (SLiMID) and SLiM Interaction Modeling (SLiMIM).

2.8.1. Hit Predictions

For each of the input proteins, fasta sequences and annotated domains are extracted. Regular expressions
from the linear motifs referenced in ELM are used to parse the corresponding sequences. For each regular
expression match, all Pfam domain matching the ELM class are extracted. For each motif, IUpred2 is used to
compute the average disorder scores (Short, Long, ShortDom, LongDom, Anchor2). In addition, for the two
partners  paired,  the  PPI  database  (BioGRID)  is  searched  and  high  and  low  throughput  experimental
interactions are counted.  The final  prediction,  for a given motif-domain association (hit),  is  a set  of  17
descriptors  (ELM-class-name,  matched_motif,  motif_uniprotId,  motif_start,  motif_end,  associated_Pfam,
Pfam_uniprotId,  ELM_experimental_evidence,  ELM_E-Value,  ShortDS,  LongDS,  ShortDomainDS,
LongDomainDS,  ANCHOR2DS,  StrictDisorder,  LowTBioGRIDInteractionsCount  and
HighTBioGRIDInteractionsCount).  The  four  most  important  parameters  (ELM_E-Value,  StrictDisorder,
TotalBioGRID count  and LowTBioGRIDInteractionsCount)  are  used to  computed  a  SLiMIP confidence
score. All predicted associations (hits) are written in a tabular separated value file.

2.8.2. Hit Alignments

For  a  given  hit,  motif  and  domain  sequences  are  aligned  (c.f.  2.5  -  Sequence  alignments)  with
corresponding  extracted  templates.  Alignment  metrics  are  computed,  to  help  template  selection.  The
corresponding  sequence-structure  alignments  can  be  visualized  with  a  color  code  indicating  either  the
conservation (query sequences) and the contacts (template sequences) for both the domain and the peptide
motif.

2.8.3. Hit Modeling

For each of the templates previously selected, a model of the complex is generated (c.f. 2.7 - Comparative
modeling). It can be visualized through the JSmol[19] applet and dowloaded for further analyses.
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3. Results

3.1. PDB Template Extraction

The parsing of the PDB in search for suitable templates for the 291 ELM/Pfam associations led into the
extraction of 5064 templates (from 2228 structures). The resulting database allows fast template selection
and motif-domain modeling for 201 ELM/Pfam associations that could find at least one template. For the
remaining 90 associations, no template could be extracted and therefore alignments/modeling can not be
performed.

3.2. SLiMAN - Web Interface

SLiMAN (http://sliman.cbs.cnrs.fr) was designed as a web application, enabling a visual and interactive
representation of the results and its use by the community from web browser. SLiMAN webserver is devided
in 4 major sections: SLiMAN, SLiMIP, SLiMID and SLiMIM.

On the SLiMAN homepage, users are asked to input a list of proteins, as a fasta file and/or a list of uniprot
accession numbers or entry names separated by a coma, to start a new SLiMAN project. First, input entries
are checked, and then the initialization of the new project is triggered to find motifs and matching domains.

3.2.1. SLiMIP – Short Linear Motif Interaction Prediction

From the inputed list of proteins, possible pairings are searched and the resulting predictions are displayed
in  a  table,  in  which  motifs  are  displayed  in  columns  and  interacting  domains  in  rows.  Residues
corresponding  to  an  ELM  motifs  are  displayed  with  the  corresponding  PTM  from  PhosphoSitePlus®
annotation, when available. On the same page, a parameter pannel is displayed, allowing the user to change
the paramerters  for  hit  filtering  based  on 20  different  criteria  (ELM(x8),  Iupred(x6),  BioGRID(x3)  and
SLiMAN(x3)). Additionally, ordering modification of the filtered hits (input, alphabetic or cluster order) is
possible. Parameters can be modified at will to navigate into the predicted results with distinct stringency.
Displayed hits  (filtered  in),  are  colorized  according  to  the  confidence  score,  and  links  to  SLiMID and
SLiMIM are displayed when templates are available. By clicking the ‘Alignments’ link, a SLiMID query of
the corresponding hit is launched.

3.2.2. SLiMID – Short Linear Motif Interacting with Domains

Triggered from the SLiMIP result table, SLiMID will preform sequence alignments of the hit (peptide and
domain) with corresponding template sequences matching the same ELM/Pfam association, and alignment
metrics are computed. Matched residues from the motif and the domain are highlighted, in green, on the full
protein sequence, to better identify the region of interest.  In addition domain/peptide boundaries can be
modified at will.  At any time,  results can be downloaded for further analyses. Resulting alignments are
displayed in a table, which can be sorted by the different alignment metrics, and corresponding templates can
be selected.  Once the selection is  made (for  at  least  one template),  users  can launch a  SLiMIM query,
sending the corresponding peptide-alignments,  domain-alignments and selected templates to comparative
modeling.

3.2.3. SLiMIM - Short Linear Motif Interaction Modeling

On  a  submited  query  (hit,  alignments  and  template  selections),  SLiMIM  will  perform  comparative
modeling of the peptide-domain complexe. Generated models are accessible in a table, can be visualized
online  using  the  Jsmol  applet,  or  directly  downloaded.  User  are  allowed  to  validate  or  discard  models
according to their expertise. Validated models are forwarded to the SLiMIP result table.

3.3. BioGRID extention

An other feature proposed by SLiMAN in the input section, is the BioGRID extention analysis. On this
extention, the BioGRID database is analyzed with the inputed proteins, and the resulting interactors (for each
entry) are displayed in a table, sorted by number of interactions. Such extracted list can be submitted to
SLiMAN, using the ‘QuickLaunch’ button (or by copy-paste of the list of interactants to the SLiMAN input
section).
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Fig 2. A) Part of the SLiMIP results table. FRAT2 NES motif able to bind to XPO1 (top-right). Eight
templates are available for alignment and modeling. B) Part of the SLiMID alignments table, where the

FRAT2 NES motif and the XPO1 domain are aligned with a closely related template, which is selected for
comparative modeling. C) JSmol view of the downloaded comparative modeling generated by SLiMIM of

the FRAT2 NES motif (top) interacting with XPO1 (bottom) using a template extracted from the PDB 6CIT
structure. 

3.4. Case study – XPO1 and FRAT2

FRAT2 is an inhibitor of GSK3-beta (GSK3beta), which is a well-studied protein-kinase known to shuttle
between the nucleus and the cytoplasm. Interogating usual databases like Uniprot, PubMed, BioGRID or
STRING  does  not  provide  any  clue  for  the  precise  mechanism  involved  in  this  translocation.  From
BioGRID,  a  total  of  14  interactors  can  be  retrieved for  FRAT2,  including  XPO1 and GSK3beta.  With
STRING databases, queries with FRAT2 retrieve GSK3beta, but not XPO1, while request with XPO1 simply
retrieve neither GSK3beta nor FRAT2. 

To find a possible mechanism of translocation, we used SLiMAN to analyze all possible SLiMs involved
in the system (Fig 2). To tackle this task, we used the BioGRID extention to gather all known interactors of
FRAT2. In a few clicks, we were able to identify a specific Nuclear Export Signal (NES) motif present in
FRAT2. GSK3beta and FRAT2 have no documented NES motif in Uniprot. But SLiMAN straightforwardly
highlights that FRAT2 harbors such a motif and that FRAT2 has been found to interact with a major exportin
XPO1. Indeed, one high-throughput experiment detected an interaction between XPO1 and FRAT2[20]. An
experimental validation using directed mutagenesis of the NES signal in FRAT2 was performed almost a
decade  ago[21]  but  this  information  did  not  make  its  way  to  most  databases.  Interestingly,  homology
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modeling of the corresponding interface with XPO1 (Fig 2.D), using SLiMAN, reveals an interaction close
to a position in XPO1 (E591) that is mutated in chronic lymphocytic leukemia[22]. Accordingly, not only a
clearer picture of the shuttling mechanism of GSK3beta was unraveled but also a new hypothesis could be
drawn for the role of the mutation of XPO1 in an particular cancer.

4. Discussion

The webserver SLiMAN (http://sliman.cbs.cnrs.fr) provides an unprecedented tool  for rapid and user-
friendly survey of possible physical interactions between proteins. As such it represents a novel opportunity
to analyze more deeply data from any type of interactomic studies.

Acknowledgements

Jean-Luc Pons is acknowledge for installation and survey of the server hardware and La Ligue contre le Cancer for
granting the doctoral funds of Victor Reys.

References

1. Hein  MY,  Hubner  NC,  Poser  I,  et  al,.  A human  interactome  in  three  quantitative  dimensions  organized  by
stoichiometries and abundances. Cell, 163(3):712-723, 2015.

2. Van Roey Kim et al., Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing
cell regulation. Chemical reviews, 114,13:6733-78, 2014.

3. Davey NE, Van Roey K, Weatheritt RJ, et al., Attributes of short linear motifs. Mol Biosyst, 8(1):268-281, 2012.
4. Kumar M, Gouw M, Michael S,  et al., ELM-the eukaryotic linear motif resource in 2020.  Nucleic Acids Res.,

48(D1):D296-D306, 2020.
5. Mistry J, Chuguransky S, Williams L,  et al., Pfam: The protein families database in 2021.  Nucleic Acids Res.,

49(D1):D412-D419, 2021.
6. Fuxreiter  M, Tompa P,  Simon I.  Local  structural  disorder  imparts  plasticity  on linear  motifs.  Bioinformatics,

23(8):950-956, 2007.
7. Erdős G, Dosztányi Z. Analyzing Protein Disorder with IUPred2A. Curr Protoc Bioinformatics, 70(1):e99, 2020.
8. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional

associations between proteins. Nucleic Acids Res., 31(1):258-261, 2003.
9. Oughtred R, Rust J, Chang C,  et al., The BioGRID database: A comprehensive biomedical resource of curated

protein, genetic, and chemical interactions. Protein Sci., 30(1):187-200, 2021.
10. Mosca R, Céol A, Aloy P. Interactome3D: adding structural details to protein networks. Nat Methods, 10(1):47-53,

2013.
11. Postic G, Marcoux J, Reys V, et al., Probing Protein Interaction Networks by Combining MS-Based Proteomics

and Structural Data Integration. J Proteome Res., 19(7):2807-2820, 2020.
12. Zhang QC, Petrey  D,  Garzón JI,  Deng L,  Honig B.  PrePPI:  a  structure-informed database  of  protein-protein

interactions. Nucleic Acids Res., 41(Database issue):D828-D833, 2013.
13. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021.  Nucleic Acids Res., 49(D1):D480-

D489, 2021.
14. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations,

PTMs and recalibrations. Nucleic Acids Res., 43(Database issue):D512-D520, 2015.
15. Burley SK, Bhikadiya C, Bi C, et al., RCSB Protein Data Bank: powerful new tools for exploring 3D structures of

biological  macromolecules for  basic and applied research and education in fundamental  biology, biomedicine,
biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 49(D1):D437-D451, 2021.

16. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on
fast Fourier transform. Nucleic Acids Res., 30(14):3059-3066, 2002.

17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol., 215(3):403-
410, 1990.

18. Wang Q, Canutescu AA, Dunbrack RL Jr. SCWRL and MolIDE: computer programs for side-chain conformation
prediction and homology modeling. Nat Protoc., 3(12):1832-1847, 2008.

19. Jmol: an open-source Java viewer for chemical structures in 3D (http://www.jmol.org/).
20. Kırlı  K,  Karaca  S,  Dehne  HJ,  et  al.,  A deep  proteomics  perspective  on  CRM1-mediated  nuclear  export  and

nucleocytoplasmic partitioning. Elife, 4:e11466, 2015.
21. Bechard M, Trost R, Singh AM, Dalton S. Frat is a phosphatidylinositol 3-kinase/Akt-regulated determinant of

glycogen synthase kinase 3β subcellular localization in pluripotent cells. Mol Cell Biol., 32(2):288-296, 2012.
22. Walker JS, Hing ZA, Harrington B, et al., Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic

leukemia. J Hematol Oncol., 14(1):17, 2021.

Structural Bioinformatics II - abstract 1

-94-



Structural analysis of interaction between SARS-CoV-2 spike protein and the

human ACE2 receptor

S.Naceri 1*, M.Ghoula1*, S.Sitruk1, G.Moroy1, D.Flatters1, A-C.Camproux1

1
 Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013 Paris, France

Corresponding Author: sarah.naceri@etu.u-paris.fr

Paper Reference: Molecular Dynamics Simulations of Influenza A Virus NS1 Reveal a Remarkably Stable 

RNA-Binding Domain Harboring Promising Druggable Pocket  s.  Abi Hussein H, Geneix C, Cauvin C, Marc 

D, Flatters D, Camproux AC. Viruses. 2020 May 14;12(5):537. doi: 10.3390/v12050537.

Abstract:

In 2019, the emergence of the highly pathogenic SARS-CoV-2 coronavirus, which spread rapidly in 2020,
led to an intensive search on this virus for a rapid development of vaccines and became a global public health

priority. At the same time, the search for drug candidates to inhibit  the virus mechanism and reduce the
overall infection has also become a priority. The Spike protein is a target protein of interest because it allows

the virus  to  enter  human cells  by interacting with human ACE2 (Angiotensin-converting enzyme 2).  In
addition,  this  protein  is  the  target  of  antibodies  produced  by  the  host  after  infection.  Several  three-

dimensional  structures  of  the  Spike  protein,  alone  or  in  interaction  with  different  protein  partners,  are
currently available. These structures were mainly resolved by cryo-electron microscopy, but also to a lesser

extent by X-ray crystallography. Thus, at the end of March 2020, 10 structures of the spike protein were
available  from  the  Protein  Databank  (PDB)  [1],  reaching  now  more  than  336  available  structures.  

The aim of this work was to analyze and characterize the interaction between the Spike Receptor Binding
Domain (RBD) which is located on the S1 subunit of the Spike protein and the human ACE2. Then, the

surface properties of the RBD was explored to identify pockets that could be recognized by therapeutic
molecule to block the RBD-ACE2 interaction.  The druggability of a target  (its  ability to bind drug-like

molecules), specifically of its binding site, can be predicted from its 3D structure [2] using physicochemical
and geometrical parameters to characterize the pockets. In our study, two RBD-ACE2 complex structures

(6M0J and 6LZG PDB) were used to understand the interaction mechanism of both proteins. As proteins are
known to be highly flexible [3], the RBD-ACE2 complex and the isolated RBD domain were studied through

Molecular Dynamics simulations (MD) using GROMACS software  [4] in order to identify the proteins's
movements,  predict  pockets  emergence  of  the  isolated  RBD during  MD and  characterize  key  residues

involved in the interaction of the complex. We ran 20 simulations of 100ns each to cover a wide range of
trajectories and to sample different  conformational spaces of our different  systems. An extensive pocket

search  was  conducted  to  detect  druggable  pockets  in  the  RBD protein  along the  simulations  using  the
PockDrug software  [5]. A multivariate statistical method has been applied to analyze the protein pockets

extracted throughout the MD. The free binding energy of the complex were computed using the Molecular
Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) method [6] to identify key residues (hotspots) in

this  RBD-ACE2  interaction.  Altogether,  our  study  helped  us  to  identify  interesting  druggable  pockets
comprising crucial key residues for the RBD-ACE2 interaction and that can be easily targeted by efficient

inhibitors in order to prevent the virus infection.
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High-dimensional multi-omics data are now standard in biology [1]. They can greatly enhance our 
understanding of biological systems when effectively integrated. To achieve this multi-omics data integration, 
Joint Dimensionality Reduction (jDR) methods are among the most efficient approaches [2,3,4]. However, 
several jDR methods are available, urging the need for a comprehensive benchmark with practical guidelines.  

We performed a systematic evaluation of nine representative jDR methods using three complementary 
benchmarks. First, we evaluated their performances in retrieving ground-truth sample clustering from 
simulated multi-omics datasets. Second, we used TCGA cancer data to assess their strengths in predicting 
survival, clinical annotations and known pathways/biological processes. Finally, we assessed their 
classification of multi-omics single- cell data.  

From these in-depth comparisons, we observed that intNMF performs best in clustering, while MCIA offers a 
consistent and effective behavior across many contexts. The full code of this benchmark is implemented in a 
Jupyter notebook - multi-omics mix (momix) - to foster reproducibility, and support data producers, users and 
future developers.  
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INRAE, UR MIAT, Université de Toulouse, Castanet-Tolosan, France

Corresponding author: charles-elie.rabier@umontpellier.fr

Reference paper: Rabier et al. (2021). The SgenoLasso and its cousins for selective genotyping
and extreme sampling: application to association studies and genomic selection. Statistics: A
Journal of Theoretical and Applied Statistics, 55(1).
https://www.tandfonline.com/doi/full/10.1080/02331888.2021.1881785

Keywords: Selective Genotyping, Genomic Selection, Variable Selection, Prediction Accuracy, High
Dimension, Lasso, Rice data

Context: In a seminal paper, Lebowitz et al. (1987) showed that the extreme observations of
a given trait (i.e. the highest or the lowest observations) contain most of the signal on Quantita-
tive Trait Loci, so-called QTL (genes influencing a quantitative trait which is able to be measured).
As a consequence, the authors suggested to genotype only the individuals with extreme phenotypes.
This concept is called selective genotyping and it was formalized later by Lander and Bostein (1989).
Genome Wide Association Study (GWAS) and Genomic Selection (GS) are today two research topics
using the selective genotyping methodology.
We denote some recent association studies using selective genotyping in plants (e.g. sugarcane, Gutier-
rez et al. 2018; tomatoes, Ohlson et al. 2018) in animals (e.g. dairy cattle, Kurz et al. 2019), and in
humans (e.g. on intelligence, Zabaneh et al. 2018). Selective genotyping is particularly rewarding for
finding QTLs: by considering the extremes, the signal is significantly increased. The second applica-
tion field of selective genotyping is Genomic Selection (GS) (Hayes et al., 2001), which is nowadays
a very popular topic in genomics (e.g. strawberry, Gezan et al. 2017; banana, Nyine et al. 2018).
The main goal of GS is to select individuals (i.e. candidates) by means of genomic predictions. Since
predictions can be performed as soon as the DNA is available, GS accelerates significantly the genetic
gain. In GS, the learning model has to be recalibrated over time, otherwise it leads to unreliable
predictions (see Goddard et al. 2009). As a result, when updating the model, candidates selected at
the previous steps are used to train the model. This way, the model is learned on extreme individuals,
which is highly linked to selective genotyping.

Results: We introduce here a new variable selection method, called SgenoLasso (for Selective
genotyping Lasso), that handles extreme data. SgenoLasso allows to estimate the number of QTLs,
their positions and their e↵ects. It di↵ers from the classical Lasso (Tibshirani 1996) since it models
explicitly the extremes. SgenoLasso enjoys all known statistical properties of Lasso since the problem
has been replaced in a L1 penalized regression framework. As its famous ancestor Lasso, SgenoLasso
has multiple cousins: we can cite for instance SgenoElasticNet (a mixture of L1 and L2 penalties) and
SgenoGroupLasso (penalty by group).
We propose a comparison with existing methods in a GWAS context, on simulated data and on rice
data. SgenoLasso and its cousins outperformed existing methods (Lasso, Group Lasso, Yuan and Lin
2006, Elastic Net, Zhou and Hastie 2005, RaLasso, Fan et al. 2017, and BayesianLasso, Park and
Casella 2008), specially when a unidirectional selective genotyping was performed (i.e. we genotype
only the so-called best individuals with the largest phenotypes).
In GS, Zhao et al. (2012) highlighted the “drastic reduction” in terms of predictive ability when only
the best individuals were used in the learning model in GS. Interestingly, Brandariz and Bernardo
(2018) have shown recently that it is crucial to include a few worst individuals in the training set, to
keep GS e�cient. However, keeping the poorest lines in a breeding program has a non negligible cost.
In this context, we show on simulated data that SgenoLasso and its cousins do not su↵er from this
drawback: they give satisfactory results even when only best individuals are considered.
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Abstract De novo genome assembly is a challenging task, especially for large non-model
organism genomes. Low sequence coverage, genomic repeats and heterozygosity often cre-
ate ambiguities in the assembly, and result in undefined sequences between contigs called
”gaps”. Hence, filling gaps in draft genomes has become a natural sub-problem of many
de novo genome assembly projects. Even though there are several tools for closing gaps,
to our knowledge none uses the long-range information of the linked read data. Linked
read technologies have a great potential for filling gaps in draft genomes as they provide
long-range information while maintaining the power and accuracy of short-read sequenc-
ing. In this work, we present MTG-Link, a novel gap-filling tool dedicated to linked read
data. Taking advantage of the barcode information contained in the linked read dataset,
a subsample of reads is first selected for each gap. These reads are then locally assem-
bled and the resulting gap-filled sequences are automatically evaluated. We validated our
approach on a real 10X genomics linked read dataset, on a set of simulated gaps, and
showed that the read subsampling step of MTG-Link enables to get better gap assemblies
in a time/memory e�cient manner. We also applied MTG-Link on individual genomes
of a mimetic butterfly (Heliconius numata), where it significantly improved the contiguity
of a 1.3 Mb locus of biological interest.

MTG-Link is freely available at https: // github. com/ anne-gcd/ MTG-Link .

Keywords High throughput sequencing, Genome assembly, Gap-filling, Linked reads

1 Introduction

The fast development of both second and third generation sequencing technologies have been
accompanied by an increased growth of the number of de novo genome assemblies, with better quality.
Complete genome assemblies are crucial for downstream analysis as they enable to get better genome
annotations, less genotyping errors and provide valuable information on structural variations [1].

Long-read sequencing technologies such as Pacific Biosciences and Oxford Nanopore are expected
to greatly improve the quality of the assembled draft genomes. Indeed, these technologies o↵er much
longer reads than short-read sequencing technologies (10-200 kb vs. 100-250 bp), giving the ability
to span repetitive regions, define haplotypes and resolve structural rearrangements [2,3]. However,
relative to short-read sequencing, long-read sequencing su↵ers from high error rates (10-15% vs. 
0.3%) [4] and lower throughput [5]. Synthetic long-read sequencing approaches can also be used for
genome assembly, as they provide all the benefits of short-read sequencing, besides incorporating
information from long strands of DNA [6]. These include linked reads, which can be employed in
synergy with true long reads to get accurate and complete genome assemblies.

With linked read technologies, such as the 10X Genomics Chromium platform, every short reads
that have been sequenced from the same long DNA molecule (around 30-50 Kb) are tagged with a
specific molecular barcode. Non-contiguous reads sharing the same barcode are referred to as linked
reads. By linking the short reads together via a shared barcode, linked read technology provides
long-range information while maintaining the power and accuracy of short-read sequencing [7,8]. Low-
cost, low-input and high-accuracy linked read technologies have many applications: de novo genome
assembly [8], haplotype identification [9] and structural variant calling [10]. The 10x Chromium
Genomics company, which popularized this technology [9], recently stopped producing such data.
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However, large volumes of data were produced and still need to be properly analyzed, and other
linked read technologies such as TELL-Seq [11] and Haplotagging [12] emerged.

Complete and accurate reconstruction of large non-model organism genomes remains challenging
with the current technologies and assembly tools. Problems generally reside at regions that are highly
repetitive, highly heterozygous or have low coverage. All these features create ambiguities in the
overlap detection between reads, resulting in undefined sequences between contigs of unknown or
estimated lengths, called gaps.

Gap-filling methods aim at recovering the gap sequence between contigs, by performing a local
assembly of the sequencing reads between the flanking sequences. Several tools have been developed
for local assembly or gap-filling with short read data, such as GapCloser [13], Sealer [14], GapFiller
[15], GAPPadder [16] and MindTheGap [17]. Implemented algorithms are quite di↵erent: some rely
on De Bruijn graphs, others on iterative extensions based on read overlaps. While some methods
use the whole input read set for assembly, others select reads of interest based on mate anchoring of
paired-end or mate pair reads. Therefore, the former have di�culty assembling repeat-rich gaps while
the latter are limited in the gap size. Even though there are several tools for closing gaps with short
read data, to our knowledge, there is currently no tool that uses the long-range information of the
linked read data, although this type of information has proven to be very useful for assembly issues.

In this work, we present MTG-Link, a novel gap-filling tool for draft genome assemblies dedicated
to linked read data. The main feature of MTG-Link is that it takes advantage of the linked-read
barcode information to get a subsample of reads of interest for the local assembly of each gap. It also
automatically tests di↵erent parameters values and performs a qualitative evaluation of the obtained
solutions. We validated our approach on a real 10X genomics dataset, in which gaps were simulated,
and compared it to MindTheGap, that does not use the barcode information. We showed that the
read subsampling step of MTG-Link enables to get better gap assemblies in less CPU time. We then
applied our tool on several individual genomes of a mimetic butterfly (Heliconius numata) to improve
the contiguity of a 1.3 Mb locus of biological interest.

2 Materials and Methods

2.1 Gap-filling with linked read data

Pipeline overview We propose a method, called MTG-Link, that aims at filling gaps in draft genome
assemblies using linked read data. The method takes as input a set of linked reads, a GFA file with
gap coordinates and an indexed BAM file obtained after mapping the linked reads onto the draft
assembly. It outputs the set of gap-filled sequences in FASTA format, as well as an assembly graph
file in GFA format, containing the original contigs and the obtained gap-filled sequences of each gap,
together with their overlapping relationships.

The method described in this work relies on a three-step pipeline, where each gap is processed
independently from the others. The first step uses the barcode information of the linked read dataset to
get a subsample of reads of potential interest for gap-filling. The second step performs local assembly
using this subsample of linked reads. Two di↵erent assembly algorithms are implemented and can be
interchangeably used. The first one, called hereafter the De Bruijn Graph (DBG) algorithm, uses a
de Bruijn graph data structure, and the second one, called the Iterative Read Overlap algorithm, is
based on on-the-fly computations of read overlaps. The third step evaluates the obtained gap-filled
sequence and annotates it with a quality score. The main steps are illustrated in Fig. 1.

Read subsampling The first step requires an indexed BAM file of linked reads mapped on the draft
assembly and an indexed Fastq file. For each gap, it extracts the linked reads whose barcode is
observed in chunk regions surrounding the gap, using the thirdparty tool LRez [18]. The chunk region
size can be defined by the user, the default value being 5,000 bp. To increase specificity, we keep only
the barcodes for which the number of occurrences in the union set from the two flanking sequences
is larger than a user-defined parameter -f (by default 2). The goal of this step is to get a subsample
of reads that will be used in the local assembly step, instead of using the whole set of reads, thus
reducing the complexity of the assembly graph and the running time.
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Fig. 1. Overview of the MTG-Link gap-filling pipeline. a) Linked reads whose barcode is observed in
chunk regions surrounding the gap are extracted, and constitute the read subsample used in the local assembly
step. b) The local assembly is performed on an extended gap, from the k-mer START (source) to the k-mer
STOP (target), using the subsample of linked reads obtained in (a). c) A quality score is assigned to the
gap-filled sequence according to its alignment against the gap flanking sequences. Only the gap-filled sequences
with good quality scores are returned.

Local assembly To fill the gap between two contigs, we perform a local assembly using the subsample of
linked reads obtained during the first step. The goal is to find a path between the source sequence and
the target sequence surrounding the gap, using an assembly algorithm. To be able to further evaluate
the obtained gap-filled sequence, we extend the gap on both sides by -ext bp (by default 500 bp).
Thus, MTG-Link will perform the local assembly between the sequences surrounding the extended
gap, e.g. from the k-mer START (source) to the k-mer STOP (target). Two assembly algorithms can
be used during this step: the DBG algorithm or the Iterative Read Overlap algorithm.

The DBG algorithm is performed with the fill module of the software MindTheGap [17]. MindThe-
Gap was originally developed for the detection and assembly of insertion variants, but it also includes
an e�cient local assembly module (fill module) that relies on a De Bruijn graph data structure to
represent the input read sequences. Basically, starting from a source k-mer, it performs a breadth-first
traversal of the De Bruijn graph, building a contig graph. The traversal is halted when the contig
graph becomes too complex. Then, all the contigs in the graph are searched for the presence of the
target k-mer. If one or more contigs are found containing the target k-mer, it returns all possible
sequence paths between both k-mers. In MTG-link, it is then used to perform a local assembly for
each pair of gap-flanking k-mers. In MindTheGap, as in any De Bruijn graph based assembly, two
parameters have major impacts on the quality of the assembly: the k-mer size and the k-mer abun-
dance threshold for including a k-mer in the graph (solid k-mer threshold). These parameters are
usually set in accordance with the expected sequencing depth. In the case of MTG-link, the latter
may vary depending on the e�ciency of the barcode-based subsampling step. Hence for higher sen-
sitivity, MTG-Link automatically tests di↵erent values for these two parameters, starting with the
highest ones and decreasing the values if no inserted sequence with good quality is found.

MTG-Link integrates another assembly algorithm: the Iterative Read Overlap algorithm. This
algorithm is based on on-the-fly computations of read overlaps and iterative extensions of the current
assembly sequence. Overlapping reads are reads whose prefix (or reverse complement of the su�x)
aligns with the su�x of the current assembly sequence with at most -dmax di↵erences (including
substitutions and indels) over at least -Omin bp. These overlaps are found using a seed-and-extend
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schema, combining a seed indexing with a hash table and a banded dynamic programming semi-global
alignment algorithm. At each iteration, several possible extensions may be found, due to sequencing
errors and/or repeats. In this case, the algorithm groups the overlapping reads together according to
their extension sequence, and gives the priority to the longest overlap. To avoid including sequencing
errors, only extensions that are supported by a minimum number of reads (parameter -a, by default 2)
are considered. Then, another extension phase begins. When no overlapping read is found, or if there
is no extension shared by a su�cient number of reads, or if the maximal assembled sequence size (user
defined parameter) is reached, then the algorithm backtracks and tries other extensions previously
encountered but not yet explored. Finally, if during an extension phase, the k-mer STOP is found,
the assembly sequence is returned and the exploration ends.

Qualitative evaluation Each gap-filled sequence obtained during the local assembly step is evaluated
to infer its quality and provide a score that might help filtering out putative erroneous sequences.
The evaluation is based on the comparison of the gap-filled sequence to the gap flanking sequences,
e.g. the sequences corresponding to the extensions of the gap -ext. Alignments are performed with
Nucmer [19]. Then, MTG-Link assigns a two-letters quality score to each gap-filled sequence. The
first letter represents the alignment to the left flanking sequence, and the second letter represents
the alignment to the right flanking sequence. To have a good quality score, the gap-filled sequence
must be larger than twice -ext bp, and it must align on at least 90% of the lengths of the gap flanking
sequences. Otherwise, the gap-filled sequence obtained is assigned a bad quality score and is considered
as erroneous. Only the gap-filled sequences with a good quality score are returned.

Implementation and availability MTG-Link is written in Python 3. In order to speed up the process,
it uses a trivial parallelization scheme by giving each gap to a separate thread. MTG-Link is available
on GitHub (https://github.com/anne-gcd/MTG-Link) under the GNU A↵ero GPL licence, and
as a Bioconda package (https://anaconda.org/bioconda/mtglink). Additional Python scripts for
converting input and output files to the desirable formats are also provided.

2.2 Validation of the method with simulated gaps

Simulated gaps We evaluated our method with a real linked read dataset but with simulated gaps in the
assembly, for which we know the true sequence to be assembled (hereafter called reference sequence)
in order to assess the quality of the results. One individual genome of the butterfly Heliconius numata
was sequenced with the 10X Genomics Chromium technology and was assembled with Supernova [8]
in a draft genome assembly (genome size of ⇠320 Mb) [20] (BioProject PRJNA676017, individual 37).
The number of reads in the dataset is approx. 110 million, with an e↵ective read depth of 40X. We
tested MTG-Link on four di↵erent gap sizes (1, 5, 10 and 20 Kbp). For each gap size, we simulated
57 gaps in the draft assembly.

MTG-Link parameters MTG-Link was used in version 1.1.0 with the same set of parameters for all
gaps. For the read subsampling step, we tested di↵erent chunk sizes (5, 10 and 15 Kbp). For the local
assembly step, we used the DBG algorithm, with a k-mer size of [61, 51, 41, 31, 21] and a solid k-mer
threshold of [3, 2]. The extension size chosen was 500 bp.

Evaluation In order to evaluate the quality of the results, we performed Blastn [21] alignments of
each obtained gap-filled sequence to the corresponding reference sequence. The gap-filled sequences
having more than 85% identity and coverage with the reference sequence are labelled as ”successful”.
However, if they have less than 85% identity and coverage with the reference sequence, they are
considered as ”erroneous”. The ”no gap-fillings” represent those for which no gap-filled sequence with
a good quality score was found, e.g. no solution was returned by MTG-Link.

Comparison with other approaches To assess the impact of the read subsampling on the quality of the
gap-filling, the running time and the memory consumption, we compared the results obtained with
MTG-Link to those obtained with MindTheGap. As MTG-Link was run with the DBG algorithm, the
local assembly step is the same in both approaches. The two approaches di↵er by the read subsampling
and the qualitative evaluation steps which are specific to MTG-Link. Besides, as the read coverage can
be highly variable in MTG-Link due to the read subsampling step, di↵erent DBG parameters values
are automatically tested. On the contrary, as the whole set of reads is used for the local assembly in
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MindTheGap, it was run with a unique parameter set: k-mer size (-k) of 51 and solid k-mer threshold
(-a) of 3.

2.3 Application on real gaps of Heliconius numata genomes

We applied MTG-Link to the gap-filling of the Supergene P locus (1.3 Mbp) of the butterfly
Heliconius numata. Twelve individuals genomes with di↵erent haplotypes were sequenced with the 10X
Genomics Chromium technology and were assembled in draft genome assemblies with the Supernova
assembler [20]. The number of reads in each dataset is approx. 110 million, with an e↵ective coverage
ranging from 20X to 47X (BioProject PRJNA676017). We attempted to fill the gaps between sca↵olds
of the Supergene P locus in eight individuals, for which this locus was fragmented. For this purpose,
we re-sca↵olded this locus by analyzing shared barcodes between sca↵olds, and performed gap-filling
with MTG-Link. MTG-Link was used with the DBG algorithm, with a k-mer size of [61, 51, 41, 31,
21] and a solid k-mer threshold of [3, 2]. For all other parameters, default values were used.

3 Results

3.1 Validation with simulated gaps

MTG-Link was assessed on simulated gaps of various sizes from a real linked read dataset of one H.
numata genome. For each gap size (1, 5, 10 and 20 Kbp), we applied our tool on a GFA file containing
57 gaps. The results obtained with MTG-Link are represented by the right bars on each subplot in
Fig. 2.

Among all tested gap sizes (228 gaps in total), 189 gaps were completely filled with MTG-Link and
returned with a good quality score. Among them, 170 gaps have a correct assembled sequence (e.g.
>85% identity and coverage with the reference sequence), hereafter referred as successful gap-fillings.
Thus, MTG-Link has a precision of 90% with a recall of 75%. As we can observe in Fig. 2, the quality
of the gap-filling depends primarily on the gap size. The gap-filling is mostly successful for small gaps
(1 and 5 Kbp), but it is more di�cult to close larger gaps (10 and 20 Kbp).

Fig. 2. Comparison of two gap-filling tools on several sets of simulated gaps. MTG-Link and
MindTheGap were applied on four sets with di↵erent gap sizes, each composed of 57 simulated gaps. MTG-
Link was run with the DBG algorithm and a chunk size of 5 Kbp.

Interestingly, we noticed that when there is no solution returned by MTG-Link (e.g. ”no gap-
fillings”), in some cases the number of barcodes observed in chunk regions surrounding the gap is very
small ( 500) (Fig. 3A). However, a higher number of barcodes does not guarantee that the gap will
be successfully filled. Indeed, increasing the chunk size, and consequently getting a larger number of
barcodes, does not improve the gap-filling (Fig. 3B). More precisely, we observed that the gaps labelled
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as ”no gap-fillings” but having a number of barcodes higher than 500 are those for which MTG-Link
finds a solution but with a bad quality score.

Fig. 3. Influence of two variables of the quality of the gap-filling performed by MTG-Link. A)
Influence of the number of barcodes on the gap-fillings. The results shown here are obtained for all tested gap
sizes (1, 5, 10 and 20 Kbp) and with a chunk size of 5 Kbp. B) Influence of the chunk size on the gap-fillings.
Three di↵erent chunk sizes were tested for 1 Kbp and 10 Kbp gaps.

The erroneous gap-fillings were manually investigated. Most of the gap-fillings showed high se-
quence similarities with the reference sequence, but were incomplete. In several cases, we observed
the presence of direct repeats in the reference sequence, generating a cycle in the De Bruijn graph
whose sequence (between repeat copies) is lost in the assembly. Preliminary results obtained with the
Iterative Read Overlap algorithm showed that this algorithm allows the correct gap-filling of some of
these gaps.

The quality score assigned by MTG-Link during the qualitative evaluation step does not give a
perfect auto-evaluation of the gap-filling, but it still improves its accuracy. Among the 228 tested
gaps, the quality score filter enabled to discard 9 erroneous gap-fillings at the expense of losing 6 false
negatives. In our method, we chose to favor precision over recall (precision of 90% with the filter vs.
86% without the filter).

Comparison with MindTheGap The gap-fillings performed by MTG-Link were compared to those
obtained with MindTheGap, the tool used in the local assembly step of our pipeline. By comparing
these two gap-filling tools, we are able to assess the impact of the read subsampling and the qualitative
evaluation steps on the gap-filling results. Results are presented in Fig. 2. As expected, MTG-Link
outperforms MindTheGap by returning more successful gap-fillings, for all tested gap sizes. Only 34%
of gaps were successfully filled with MindTheGap, against 75% with MTG-Link. The di↵erences tend
to increase with the gap size. Therefore, the read subsampling and the qualitative evaluation steps
greatly improve the gap-filling.

Gap 1Kbp Gap 5 Kbp Gap 10 Kbp Gap 20 Kbp
Time Memory Time Memory Time Memory Time Memory

MTG-Link 1min27s 2.7 G 1min38s 3.1 G 2min2s 5.0 G 2min26s 13.4 G
MindTheGap 3min23s 15.1 G 3min26s 15.0 G 3min35s 15.7 G 3min34s 15.2 G

Tab. 1. Comparison of resources used by two gap-filling tools on several sets of simulated gaps.

For each gap size, MTG-Link and MindTheGap were applied on a set of 57 simulated gaps. MTG-Link was
run with the DBG algorithm. The values reported in this table are the average runtime for one gap, and the
memory peak reached during each run of 57 gaps.
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Importantly, MTG-Link is also significantly faster than MindTheGap. The average runtime of
MTG-Link is comprised between 1.5 and 2.4 minutes per gap, which is approx. two times smaller
than MindTheGap runtime (approx. 3.5 minutes per gap), as shown in Tab. 1. Although MTG-
Link tests several parameters values contrary to MindTheGap, it remains faster thanks to the read
subsampling step. Hence, MTG-Link is a time/memory e�cient gap-filling tool.

3.2 Application on real gaps of Heliconius numata genomes

We applied MTG-Link on real gaps from real linked read datasets to improve the contiguity of the
Supergene P locus of the butterfly Heliconius numata. The Supergene P locus is a locus of biological
interest in H.numata as it controls the mimetic wing colour pattern and is subject to rearrangement
polymorphism [20]. Out of the twelve individual genomes sequenced and assembled in this study, the
Supergene P locus was reconstructed as a single sca↵old for four individual genomes. For the other
eight individual genomes, the assembly of this locus was fragmented into several sca↵olds (61 gaps in
total). For each of these eight individuals, we attempted to fill the gaps between the sca↵olds using
MTG-Link. We succeeded in reducing the number of sca↵olds in the Supergene P locus for all H.
numata individuals. For two of them, the Supergene P locus was reconstructed as a single sca↵old in
one step of gap-filling. For the others, the assembly was still fragmented and it required additional
steps of extra contigs recruitment. Finally, after all these steps, we succeeded in filling 43 out of the
61 initial gaps with MTG-Link. This improved contiguity will allow a finer analysis of the genomic
structural diversity in this locus.

4 Discussion and Conclusion

In this work, we provide a novel gap-filling tool for linked read data, called MTG-Link. This tool
is composed of three main steps: read subsampling, local assembly and qualitative evaluation. To
our knowledge, this is the first gap-filling tool for draft genome assemblies, dedicated to linked read
data. We have therefore compared our tool MTG-Link to a generic short-read local assembly tool,
MindTheGap. Both use the same De Bruijn Graph assembly algorithm, allowing to assess the benefit
of the additional read subsampling step of MTG-Link prior to local assembly. We have shown that
MTG-Link outperforms MindTheGap, in terms of both time and gap-filling quality.

Therefore, this analysis highlights the main benefit of using linked read data for the gap-filling
of draft genomes, as the barcode information contained in the reads allows the enrichment of reads
originating from the gap region in the read set used for the assembly. By discarding a large fraction
of reads originating from other regions of the genome, we reduce the noise and complexity in the
assembly graph, thus making the search for the gap-filling path easier.

A valuable feature of MTG-Link is to assign a qualitative score to each gap-filled sequence. This
feature allows the pipeline to automatically test several parameters values for local assembly and to
select the best solution. This is important in the context of barcode-based read subsampling, as the
resulting sequencing depth and thus the optimal assembly parameters values can greatly vary between
gaps. Moreover, the qualitative evaluation also allows the user to choose to prioritize the precision
over the recall by using a more stringent quality score, and reciprocally.

One of the characteristics of MTG-Link is that it can use either aDe Bruijn Graph (DBG) algorithm
or an Iterative Read Overlap algorithm in the local assembly step. For the moment, MTG-Link was
mainly tested with the DBG algorithm, and we have shown that this algorithm performs well, especially
on small gaps. However, the gap-filling is less successful on larger gaps probably due to an increased
likelihood of containing some repeated regions or a drop of sequencing depth as the distance to the
gap extremities grows. In this context, the Iterative Read Overlap algorithm appears as a promising
avenue for improvement, since it allows for variable size overlaps between reads. Longer overlaps allow
to disentangle repeats larger than the k-mer size used in the de Bruijn graph but smaller than the
read size, whereas smaller overlaps allow the assembly of regions of the gap covered by fewer selected
reads.
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INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, F-35650 Le Rheu, France

Corresponding author: pierre.morisse@inria.fr

Abstract Linked-Reads technologies, popularized by 10x Genomics, combine the high-
quality and low cost of short-reads sequencing with a long-range information by adding
barcodes that tag reads originating from the same long DNA fragment. Thanks to their
high-quality and long-range information, such reads are thus particularly useful for various
applications such as genome sca↵olding and structural variant calling. As a result, multi-
ple structural variant calling methods were developed within the last few years. However,
these methods were mainly tested on human data, and do not run well on non-human
organisms, for which reference genomes are highly fragmented, or sequencing data dis-
play high levels of heterozygosity. Moreover, even on human data, most tools still require
large amounts of computing resources. We present LEVIATHAN, a new structural vari-
ant calling tool that aims to address these issues, and especially better scale and apply
to a wide variety of organisms. Our method relies on a barcode index, that allows to
quickly compare the similarity of all possible pairs of regions in terms of amount of com-
mon barcodes. Region pairs sharing a su�cient number of barcodes are then considered
as potential structural variants, and complementary, classical short reads methods are
applied to further refine the breakpoint coordinates. Our experiments on simulated data
underline that our method compares well to the state-of-the-art, both in terms of recall
and precision, and also in terms of resource consumption. Moreover, LEVIATHAN was
successfully applied to a real dataset from a non-model organism, while all other tools
either failed to run or required unreasonable amounts of resources. LEVIATHAN is im-
plemented in C++, supported on Linux platforms, and available under AGPL-3.0 License
at https://github.com/morispi/LEVIATHAN.

Keywords Linked-Reads, structural variants, variant calling, genome sequencing, sequenc-
ing data analysis

1 Introduction

Structural variants (SVs) represent variations in the structure of an organism’s genome. Detecting
such events is crucial, since many of them are associated with genetic diseases. Classical short-read
SV calling methods usually rely on their alignment against a reference genome, and on the detection
of discordant paired-read or split read signals, in order to determine the breakpoints and types of the
SVs. However, due to the limited size of the short-reads, many SVs remain undetected, while many
False Positive calls are reported by such methods [1].

Linked-Reads technologies rely on partitioning and barcoding of diluted high-molecular-weight
DNA using a microfluidic device prior to classical short-read sequencing. Molecule sizes usually range
between 10 and 50 kbp on average. However, the short-reads coverage of each molecule is usually
low. Indeed, for a typical 30x sequencing depth experiment, the coverage of the reference genome by
the large molecules is of about 150x, but each molecule displays a weak short-read coverage of about
0.2x. 10x Genomics popularized this technology [2], but since discontinued the sales of their Linked-
Reads product lines. However, large volumes of data were produced and still need to be properly
analyzed, and other technologies such as TELL-Seq [3] and Haplotagging [4] emerged, and also allow
the sequencing of Linked-Reads.

Thanks to the barcodes, the origin of the short-reads fragments can be determined, and long-range
information can be inferred. Such reads thus combine the high-quality of the short-reads with the
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long-range information of the long-reads. As a result, Linked-Reads are particularly useful for various
applications, such as genome sca↵olding [5], and especially SV calling, on which we further focus
below.

1.1 Related works

Since their inception, several methods were developed to detect SVs using Linked-Reads. These
methods mainly focus on the detection of large SVs (around 10 kb) by leveraging the long-range
information of the Linked-Reads. As of today, the nine following tools are available: Long Ranger
[2,6], GROC-SVs [7], LinkedSV [8], NAIBR [9], VALOR/VALOR2 [10,11], ZoomX [12], Novel-X [13]
and the NUI-pipeline [14]. Most of these methods rely on pairwise comparison of regions of the
reference genome, in order to retrieve pairs of distant regions that share a higher number of barcodes
than what would be expected based on their distance. Indeed, such region pairs indicate regions that
actually appear close to each other on the resequenced genome, since adjacent regions are expected
to share more barcodes than distant ones, and thus represent potential SV evidence. However, these
methods do not make use of e�cient barcode indexing strategies. As a result, they either need to
store the barcodes of each region, which can be extremely memory consuming, or extract the barcodes
from the same region multiple times, which can be highly time consuming.

Moreover, all of the aforementioned methods were mainly designed for human data, and especially,
all of them were tested exclusively on human datasets in their respective publications. As a result,
this focus on human data, and the lack of indexing strategies lead to scalability issues and to a poor
applicability to non-model organisms, for which reference genomes are highly fragmented or sequencing
data display high levels of heterozygosity. For example, Long Ranger displays an error message and
cannot run on reference genomes composed of more than 1,000 contigs, while tools such as LinkedSV
and VALOR2 can require up to more than 1 TB of RAM, and others such as GROC-SVs and NAIBR
sometimes undergo an indefinite sleep after running for a few days.

1.2 Contribution

We introduce LEVIATHAN, a new Linked-Reads based SV calling method that aims to overcome
these limitations, and especially mitigate resource consumption, and allow applications to non-model
organisms. To achieve scalability, our method relies on a new indexing strategy, that allows to record
the occurrence positions of the di↵erent barcodes through the input BAM file. This index allows to
quickly and e�ciently compute the number of common barcodes between all possible pairs of region
that share at least one barcode. The numbers of shared barcodes between region pairs thus give a
first hint as to where SVs might be located. In a second step, classical short reads methods, such as
discordant paired-reads and split reads analysis are applied to region pairs sharing a su�cient number
of barcodes, to further filter out false-positives, and accurately determine the types and breakpoints
of actual SVs.

Using default parameters, our method can detect large SVs of at least 1,000 bp, including deletions,
duplications, inversions and translocations. However, it has no support for novel insertions yet. Our
experiments on simulated data show that it compares well to the state-of-the-art in terms of recall
and precision, and also in terms on resource consumption. Moreover, experiments on real data also
show that it manages to run on non-model organisms on which other tools either fail to run or require
unreasonable amounts of resources. LEVIATHAN thus allows to analyze a wider range of datasets
than the state-of-the-art, and opens doors to broader analysis of SVs in a large variety of organisms.

2 Methods

2.1 Overview

LEVIATHAN takes as input a BAM file representing the alignments of the sequencing reads of
interest against a reference genome. This BAM file can either be generated by a Linked-Reads dedi-
cated mapper, such as Long Ranger, or by any other aligner. However, when using another aligner, the
reads require pre-processing prior to alignment, in order to extract the barcodes from the sequences
and append them to the headers. For instance, such a pre-processing can be performed using Long
Ranger basic.
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LEVIATHAN relies on two distinct steps. The first step relies on the computation of the amount of
common barcodes between region pairs of the reference genome, in order to highlight SVs candidates.
The second step then acts as a refining step, and relies on classical short read methodologies to further
filter out erroneous candidates and determine the types and breakpoints of actual SVs. An overview
is given in Figure 1, and the di↵erent steps are further in the following subsections.

BAM �le

��������
��������
��������
��������
��������
��������
��������
��������

Barcode indexing

ACGG : 1:2,3:25,...
TATG : 1:75,8:0,...

.

.

.

CGTA : 4:3,66:8,...
GGCA : 3:9,75:1,...
ATTA : 4:6,75:8,...

Retain region pairs
sharing enough barcodes

##�leformat = ...
##source = ......

chr1 12 SV1 A DEL
chr3 8 SV56 C INV

Compute empirical distribution

Step 2 : Analyze valid candidates
with short reads signatures

R1, R6: 12

R60 , R75 : 16

R75 , R92 : 17

VCF �le

LRez
barcode index

Step 1 : Compute number
of common barcodes

. . .
R1 R6

R1, R6: 12
R1, R8: 3

...
R60 , R75 : 16
R75 , R80 : 8
R75 , R92 : 17

Output SVs

Fig. 1. Overview of the workflow of LEVIATHAN. First, the occurrence positions of the barcodes appearing
in the BAM file are indexed. The first step queries the index, to identify region pairs that share at least one
barcode, and compute the number of common barcodes of such pairs. The distribution is then analyzed, and a
threshold above which region pairs are further considered is defined. The second, refining step, analyzes reads
signatures of these pairs, in order to define the types and breakpoints of the SVs, which are output in VCF
format.

2.2 Index construction

The index construction step relies on LRez [15], a tool and library designed to process Linked-
Reads barcodes, which, among other functionalities, provides indexing features. LEVIATHAN thus
uses LRez to build an index containing the occurrence positions of each barcode in the BAM file. This
index is stored as a map, associating each barcode (in binary representation, 2 bits per nucleotide) to
its list of occurrence positions in the reference genome, in format chromosome:position.

2.3 Computing the number of common barcodes between region pairs

Once the barcode index is built, the reference genome is divided in non-overlapping regions of size
L (L = 1, 000 by default, although this can be user-defined). As a result, LEVIATHAN only considers
SVs whose breakpoints are located more than L bp apart on the reference genome. Iterating through
the index then allows to easily identify region pairs that share at least one common barcode, as well as
the exact number of common barcodes between such region pairs. This information is stored in a map,
where the key is a region pair, and where the value is the number of common barcodes these regions
share. This indexing and querying strategy allows to avoid the explicit comparison between every
possible region pairs, and thus allows a massive speed-up. However, processing the index as such
still raises a memory issue, since numerous region pairs will share only few barcodes by chance, and
will need to be stored, despite the fact they will not be considered as candidates in further steps due to
their weak support. To mitigate memory consumption, we iterate through the index N times (N = 10
by default). Given R is the total number of regions in the reference genome, for each iteration, we only
compute the number of common barcodes between region pairs for which the first region is comprised
between the ((i� 1) ⇤R/N +1)-th and the (i ⇤R/N)-th region of the reference genome. At the end of
each iteration, the region pairs that share less than B barcodes (B = 1 by default) are removed, since,
as previously mentioned, they will not be considered as candidates in further steps. We set this value
to 1 by default, since, for 10x Genomics Linked-Reads a given barcode does not correspond to a single
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molecule, but can correspond to up to 10 di↵erent ones. As a result, it is frequent that two distant
regions share a given barcode by chance, but it is much less likely that they share more. In practice,
with B = 1, this filter allows to filter out more than 95% of the overall number of region pairs, thus
greatly reducing memory consumption. During this step, we also gather statistics on the empirical
distributions of the number of shared barcodes between region pairs according to their distances, which
will be used in the following step.

2.4 Identifying region pairs with high numbers of common barcodes

Once the numbers of common barcodes between all the pairs of regions have been computed, we
need to define a threshold above which region pairs will be considered as putative SVs candidates.
E↵ectively, despite the fact region pairs sharing only few barcodes are dynamically filtered while
querying the index, a large number of pairs will still share a low number of barcodes, simply by chance
in the absence of any SV. Further analyzing all of them would thus require an unreasonable amount
of resources. Moreover, it is worth noting that pairs of regions that appear close to each other on the
reference genome will naturally share more barcodes than pairs of regions that either appear far from
each other, or even more so, on di↵erent chromosomes. As a result, considering all region pairs as one
to analyze the distribution of their numbers of shared barcodes, and thus defining a single threshold,
could be misleading and lead us to ignore distant pairs of regions that contain a SV breakpoint, but
share an insu�cient number of barcodes.

To compensate, we consider three distinct classes of distances between regions in a pair: the pairs
of regions that are located close to each other (either directly adjacent or separated by one region
at most), the pairs of regions that are moderately distant (separated by two to ten regions), and the
pairs of distant regions (separated by more than ten regions) or on di↵erent chromosomes.

For each distance class, we then chose the 99-th percentile of the empirical class distribution as a
threshold. Candidate region pairs that share less barcodes than their associated threshold are removed
and not further considered.

Finally, if a region is involved in an excessively high number of pairs (> 1, 000 by default), all
of its pairs are also removed from the candidate list. Indeed, such regions are most probably either
involved in multi-mapping problems, or prone to erroneous mapping caused by repeated regions. As a
result, they are thus filtered out, since the probability of a single region being involved in such a large
number of SVs is feeble. Moreover, excluding such regions from further analysis once again helps us
reducing computation times. Other regions passing all these filters are then independently processed.

2.5 Candidate SV processing

For each of the candidates passing the previously described filters, LEVIATHAN then investigates
regular short reads signals. First, reads that map on both regions are retrieved, and only these
reads are then further analyzed. Classical short-reads methods are thus applied to analyze discordant
paired-read and split read signatures between these two regions, in order to further determine whether
a candidate is a valid SV or not, and to identify the type and the breakpoints coordinates of the actual
SVs. Figure 2 illustrates the relationship between short reads signals and SVs types.

From this analysis, multiple support values are associated to each candidate. These values register
the number of shared barcodes between the two regions, the support of each SV type, the overall
number of discordant paired-reads, the overall number of split reads, as well as the support of all
the possible breakpoints, in each of the two regions. A candidate is then considered as a valid SV if
its support values are su�ciently high. By default, the minimum required supports are at least one
discordant read pair, and at least one split read, indicating the breakpoint of the SV, in each of the
two regions. Candidates passing these two filters are thus considered as valid SVs.

In terms of implementation and optimization, candidates are sorted in such a way that region pairs
in which a same given region is involved are gathered together, to that the alignments of that said
region only need to be extracted once. Additionally, each candidate (region1, region2) is gathered with
the other candidates of the region involved in the largest number of candidates. For instance, if region1
is involved in three candidates, and region2 is involved in five, the candidate (region1, region2) will
be gathered with other candidates of region2. This allows to further reduce the number of alignments
extractions, and thus further optimize the runtime.
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Fig. 2. Short reads signals (discordant paired-reads and split reads) used to discriminate SV types when
analyzing candidates. Dashed lines represent the regions which are considered when analyzing short-reads
signals.

2.6 SV filtering and output

Prior to output, a last filtering step is applied to SV candidates. It can happen that the same SV
event is represented by several breakpoint pair candidates whose genomic coordinates are close (within
10 bp from each other) or identical, but with a di↵erent annotated type. In such a case, we only report
the candidate with the largest cumulative support (barcode and short-read signal supports).

LEVIATHAN finally outputs its final list of SVs in VCF format, reporting detailed information
regarding the SV, such as its type, its beginning and end positions, its length, the number of barcodes
shared between the two involved regions, and the number of discordant paired-reads involved.

3 Results

We evaluated LEVIATHAN on simulated and real datasets. For the real data, we chose a dataset
from the butterfly Heliconius numata, which is a non model organism and for which the discovery of
structural polymorphism is of special interest. In this mimetic butterfly, it was shown that several
large inversions in a 1.3 Mb locus are associated to its wing color pattern and then play a crucial role
in its population biology [16]. As a non model organism, it does not have a chromosome-level reference
genome, instead its 360 Mb draft genome is rather fragmented with a total of 16,950 contigs (N50:
474 kb). This genome, together with 10X genomics whole genome resequencing data of 12 individuals
are available under the PRJNA676017 project ID on NCBI.

In order to properly evaluate the results quality, we also simulated data with controlled sets of
SVs. To do so, we used LRSim [17] to ensure producing data that mimic the actual characteristics
of Linked-Reads. We generated two datasets, one from the H. numata genome and one from the H.
sapiens GrCh38 chromosome 1 (250 Mb), in order to compare the results between non-model and
model organisms with similar genome sizes but di↵erent genome complexities. However, since LRSim
had troubles simulating data on the highly fragmented assembly of H. numata, we had to filter out
contigs shorter than 27,500 bp, resulting in a reference genome composed of 1,054 contigs (total size:
272 Mb and N50: 924 kb). Both datasets were simulated with a 30x coverage, and contained respec-
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tively 1,348 SVs and 1,048, ranging from 1,000 to 100,000 bp, including, deletions, duplications, and
inversions as well as translocations for the H. numata dataset. No insertions were simulated, since
LEVIATHAN is not currently able to process them. Additionally, SNPs were also inserted, in order
to further mimic real data.

We compared LEVIATHAN against other state-of-the-art Linked-Reads SV calling tools. All tools
were run using 8 threads. LEVIATHAN was run both in fast and sensitive mode. For fast mode, the
99-th percentiles of the distributions were chosen, while for sensitive mode, the 95-th percentiles were
chosen. Other tools were run with default or recommended parameters. Moreover, both simulated
and real data were used in our experiments.

3.1 Validation of the method with simulated data

To precisely asses the accuracy of the di↵erent tools, we first tested them on the simulated datasets,
where precise recall and precision could be computed. However, on both datasets, we could not manage
to get GROC-SVs, LinkedSV and Valor to run properly. Indeed, GROC-SVs and LinkedSV crashed
on both datasets, while Valor also crashed on the H. numata dataset, and ran for more that two days
on the H. sapiens dataset.

For these experiments, a SV was validated as a true positive if its breakpoints were correctly
predicted, within 100 bp from a true SV reported in the simulation file. Since NAIBR only reported
the breakpoints of the SVs it detected, we did not take into account the SV types, in order to allow
a fair comparison. Statistics of the aforementioned tools on the two simulated datasets, along with
their runtime and memory consumption are reported in Table 1.

Results on the H. sapiens dataset show that, in terms of resource consumption, LEVIATHAN
was faster than Long Ranger and NAIBR, both in fast and sensitive mode, and also required less
memory, especially compared to NAIBR. However, it is worth noting that Long Ranger does not
accept BAM files as an input, and that its reported runtime thus also includes reads mapping. In
terms of recall, Long Ranger performed slightly better than LEVIATHAN (fast), but reached a much
lower precision. Compared to NAIBR, even in fast mode, LEVIATHAN reached both higher recall and
higher precision. Moreover, it is also worth nothing that, in sensitive mode, LEVIATHAN reached up
to 89% of recall, while still running faster than NAIBR, and consuming the same amount of memory
as in fast mode. Precision was however lower in sensitive mode than it was in fast mode, which can
be explained by the fact that, in sensitive mode, a larger number of SV candidates are considered,
which can increase the false-positives rate. Nonetheless, LEVIATHAN still reached more than 92% of
precision in both modes, and largely outperformed both NAIBR and especially Long Ranger.

On the H. numata dataset, Long Ranger could not be run since it does not allow the reference
genome to contain more than 1,000 contigs. Once again, the two modes of LEVIATHAN required
almost three times less memory than NAIBR, and LEVIATHAN (fast) also ran faster. In terms of
recall and precision, both modes of LEVIATHAN outperformed NAIBR, whose recall was particularly
low, failing identifying more than half of the SVs (recall of 40.73%). In comparison, LEVIATHAN
(fast) reached a recall of 63.65%, while running faster than NAIBR, and LEVIATHAN (sensitive)
reached a recall of 66.54%, despite requiring a slightly larger processing time than NAIBR. In terms
of precision, both modes of LEVIATHAN once again outperformed NAIBR, reaching up to 97.36%
in fast mode. While LEVIATHAN still outperformed NAIBR on this dataset, its overall performance
was not as good as on the H. sapiens dataset. Although this can be partially explained by the low
quality of the reference genome we used, this still leaves us room for improvement, and future works
should thus head in the direction of studying why such a proportion of SVs remained undetected.

3.2 Application to a real butterfly dataset

We then applied the di↵erent tools on the real dataset of H. numata. On this dataset, no tool
except LEVIATHAN managed to run. Indeed, Long Ranger could not be run since the reference
genome was composed of more than 1,000 contigs, GROC-SVs and NAIBR were stopped after 15

Algorithms & sequence data structures II - abstract 2

-114-



Dataset Tool Recall (%) Precision (%) Time Memory (MB)

H
.
sa
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en

s
(c
h
r
1) LEVIATHAN (fast) 71.18 97.14 11 min 4,603

LEVIATHAN (sensitive) 89.03 92.38 37 min 4,603

NAIBR 68.13 78.12 44 min 25,764
Long Ranger 72.04 50.23 11 h 29 min 7,062
GROC-SVs1 - - > 6 hours 11,030
LinkedSV2 - - > 19 min 9,311
Valor3 - - > 2 days -

H
.
n
u
m
at
a

LEVIATHAN (fast) 63.65 97.39 8 min 4,560

LEVIATHAN (sensitive) 66.54 92.95 13 min 4,560

NAIBR 40.73 86.19 10 min 11,736
Long Ranger4 - - - -
GROC-SVs1 - - > 24 min 1,403
LinkedSV2 - - > 23 min 30,250
Valor3 - - - -

Tab. 1. Results reported by the di↵erent SV calling tools on the two simulated datasets. 1 GROC-SVs crashed
after 6 hours on the H. sapiens dataset, and after 24 minutes on the H. numata dataset. 2 LinkedSV crashed
after 19 minutes on the H. sapiens dataset, and after 23 minutes on the H. numata dataset. 3 Valor was killed
after 2 days of computing on the H. sapiens dataset, and crashed upon start on the H. numata dataset. 4 Long
Ranger could not be run on the H. numata dataset, since it does not allow the reference genome to contain
more than 1,000 contigs.

days of computation, Valor crashed during processing, while LinkedSV also crashed and required
more than 1 TB of RAM.

In comparison, LEVIATHAN managed to run in less than two hours, only required 18 GB of RAM,
and reported a total of 50,000 SVs. On this dataset, we were especially interested in finding inversions
located in the supergene locus, the locus associated to the wing color patterns of H. numata. On the
particular individual we studied in this experiment, LEVIATHAN did report the 430 Mb inversion
at its expected breakpoints. This inversion was initially detected with SNPs, as it is associated to
strong sequence divergence between individuals that display or do not display it. It was then further
confirmed via PCR, and breakpoints were refined by aligning di↵erent genome assemblies [16].

While other variants reported by LEVIATHAN still need to be properly analyzed, its ability to
run on such non-model organisms, for which the reference genome are highly fragmented, without
requiring an unreasonable amount of resources, represents a major improvement compared to the
state-of-the-art. Moreover, the fact that the inversion of interest could be detected at its expected
breakpoints is particularly promising for the analysis of the remaining reported SVs.

4 Discussion and conclusion

We presented LEVIATHAN, a new SV calling tool for Linked-Reads data. LEVIATHAN makes
use of a barcode index, which allows us to quickly and e�ciently identify the region pairs than share a
high number of barcodes, which represent potential SVs. Complementary classical short reads methods
are then applied, in order to further analyze such pairs of regions, and determine whether they are
actual SVs, as well as their types and breakpoints in such cases.

Our experiments show that LEVIATHAN compares well to the state-of-the-art in terms of recall
and precision, all the while being faster and consuming less memory. Moreover, LEVIATHAN also
allows the analysis of non-model organisms on which other tools do not manage to run or require
an unreasonable amount of resources. As a result, LEVIATHAN thus tackles the main limitations
of other Linked-Reads SV calling tools, and allows to better scale to large datasets, as well as to
accurately analyze non-model organisms. We thus believe LEVIATHAN could allow the discovery of
new sets of SVs on a broad range of such datasets.

As future work, we are, first of all, planning to try LEVIATHAN on several other non-model
datasets in order to detect new SVs. Moreover, we are also planning to integrate a local assembly
feature, that would not only help us detect SV breakpoints more accurately, but that would also
allow us to detect novel insertion variants. Other optimizations, such as analysis and comparison of
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SVs sharing common breakpoints, to better determine their types, and in-depth study of undetected
SVs in simulated data are also currently being investigated. We are also considering integrating other
short-reads classical approaches to LEVIATHAN, in order to allow the detection of shorter SVs. Since
most Linked-Reads based SV calling tools only focus on large SVs, this would allow to detect a broader
range of SVs, while having to run a single tool. Finally, while LEVIATHAN is currently designed
for and has only been tested on 10x Genomics Linked-Reads, adaptation to other barcoded Linked-
Reads technologies seems to be feasible at the expense of minimal additional work. As a result, we are
planning to integrate support for other technologies in the near future. In particular, the Haplotagging
technology has been designed for re-sequencing a large number of individuals at a low cost [4], and its
relevance has been illustrated with the discovery of large inversions in a non-model butterfly. Our tool
will be particularly fitted for these applications that are likely to become widely used for population
genomics analyses.
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Alternative splicing (AS) is an important mechanism in the development of many cancers, as novel
or aberrant AS patterns play an important role as an independent onco-driver. In addition, cancer-
specific AS is potentially an e↵ective target of personalized cancer therapeutics. However, detecting
AS events remains a challenging task, especially if these AS events are not pre-annotated. This is
exacerbated by the fact that existing transcriptome annotation databases are far from being compre-
hensive, especially with regard to cancer-specific AS. Additionally, traditional sequencing technologies
are severely limited by the short length of the generated reads, that rarely spans more than a sin-
gle splice junction site. Given these challenges, transcriptomic long-read (LR) sequencing presents a
promising potential for the detection and discovery of AS.

We present Freddie, a computational annotation-independent isoform discovery and detection tool.
Freddie takes as input transcriptomic LR sequencing of a sample and computes a set of isoforms for
the given sample. Freddie takes as input the genomic alignment of the transcriptomic LRs generated
by a splice aligner. It then partitions the reads to sets that can be processed independently and in
parallel. For each partition, Freddie segments the genomic alignment of the reads into canonical exon
segments. The goal of this segmentation is to be able to represent any potential isoform as a subset of
these canonical exons. This segmentation is formulated as an optimization problem and is solved with
a Dynamic Programming algorithm. Then, Freddie reconstructs the isoforms by jointly clustering
and error-correcting the reads using the canonical segmentation as a succinct representation. The
clustering and error-correcting step is formulated as an optimization problem – the Minimum Error
Clustering into Isoforms (MErCi) problem – and is solved using Integer Linear Programming (ILP).

We compare the performance of Freddie on simulated datasets with two isoform detection tools
with varying dependence on annotation databases, FLAIR [2] and StringTie2 [3]. We show that
Freddie outperforms them in its recall, including those given the complete ground truth annotation.
In terms of false positive rate, Freddie performs comparably to the other tools. We also run Freddie
on a transcriptomic LR dataset generated in-house from a prostate cancer cell line. Freddie detects
a potentially novel Androgen Receptor isoform that includes novel intron retention, cross-validated
using orthogonal publicly available short-read RNA-seq datasets.
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Introduction 

The past 5 years has witnessed a dramatic change in the knowledge that can being gleaned from 
metagenomic studies. Metagenomics assembly has become more routine, with the generation of metagenome 
assembled genomes (MAGs) providing insights into community composition from a genomic perspective.  
In this presentation, I will highlight some of the recent research outputs from my group, both in terms of 
datasets (e.g. the Unified Human Gut Genome Catalog) and tools that have been developed to access viral 
and eukaryotic components. Finally, I will indicate how these developments are being incorporated into the 
range of MGnify services, and the breadth of data that are now available.  
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Introduction 

Microbes are able to carry out a number of interactions that can be important for ecosystem functioning. The 
inference of microbial networks aims to predict those interactions from microbial abundance data. Yet, there 
are a number of reasons why it may be challenging to infer microbial interactions. This talk will provide a 
brief overview of issues that affect the ability of network inference methods to predict microbial interactions. 
Following this discussion, several network inference tools and their performance on simulated data will be 
discussed. This will be concluded with a short introduction of methods for the analysis of microbial 
association networks that take their inaccuracy into account.  
 

Bioinformatics for microbiomes - abstract 2

-120-



 

 

Sedimentary ancient DNA revealed irreversible plankton shifts and toxic 
microalgae species invasion in relation to human impact in the Bay of Brest.  

Raffaele SIANO 
Ifremer - DYNECO/ Pelagos, BP70, 29280, Plouzané, France 

raffaele.siano@ifremer.fr 
 

Introduction 

To evaluate he stability and resilience of coastal ecosystem communities to perturbations occurred during the 
Anthropocene, pre-industrial biodiversity baselines inferred from paleo-archives are needed. The study of 
ancient DNA (aDNA) from sediments (sedaDNA) has provided valuable information about past dynamics of 
specific taxa, including Harmful Algal Bloom (HABs) species, and protist communities in relation to 
ecosystem variations. Sediment cores collected from different sites of the Bay of Brest (Northeast Atlantic, 
France) allowed ca. 1400 years of retrospective analyses of the effects of human pollution on marine protists 
and HABs. Comparison of sedaDNA extractions and metabarcoding analyses with different barcode regions 
(V4 and V7 18S rDNA) revealed that protist assemblages in ancient sediments are mainly composed of 
species known to produce resting stages. Multivariate regression tree (MRT) analyses revealed major shifts 
within protist communities. Dinoflagellates and stramenopiles community variations coincided with heavy 
metal pollution traces in sediments ascribed to the World War II period. After the war and especially from the 
1980s to 1990s, protist genera shift followed chronic contaminations of agricultural origin, showing an 
increase in the HAB species Alexandrium minutum across the XXth century. Community composition 
reconstruction over the time showed that there was no recovery to a Middle-Age baseline composition. This 
demonstrates the irreversibility of the observed shifts after the cumulative effect of war and agricultural 
pollutions. Developing a paleoecological approach, this study highlighted how human contaminations 
irreversibly affect the marine microbial compartments, which contributes to the debate on coastal ecosystem 
preservation and restoration. 

 

Reference 

Siano Raffaele, Lassudrie Duchesne Malwenn, Cuzin Pierre, Briant Nicolas, Loizeau Veronique, Schmidt 
Sabine, Ehrhold Axel, Mertens Kenneth, Lambert Clement, Quintric Laure, Noël Cyril, Latimier Marie, 
Quéré Julien, Durand Patrick, Penaud Aurélie Sediment archives reveal irreversible shifts in plankton 
communities after World War II and agricultural pollution . Current Biology Volume 31, Issue 12, 21 June 
2021, Pages 2682 2689.e7 https://doi.org/10.1016/j.cub.2021.03.079.  
 

Bioinformatics for microbiomes - abstract 3

-121-



> Symposium
Post selection inference: 
valid double-dipping

-122-



 

 

Selective inference for region detection with high-throughput genomic assays 

Yuval BENJAMINI
1
 

1
 Department of Statistics and Data-Science, Hebrew University, Mount Scopus, 9190501, 

Jerusalem, Israel 
 

Corresponding Author: yuval.benjamini@mail.huji.ac.il 
 

1. Abstract  
In both genomics and neuroscience, scientists search for spatially-coherent regions which are correlated 

with a covariate of interest. A popular approach is to (a) estimate a population statistic at each point, (b) 
threshold this map and (c) merge spatially consistent points passing the threshold into regions. However, 
treating these regions as if they were known a-priori would lead to biases in the estimation, especially 
considering the large spatial process from which they were selected.  

In this talk I will present a conditional-inference approach to estimating and forming confidence intervals 
for the effects in regions [1]. The proposed method is based on sampling from a conditional distribution, and 
therefore can accommodate the non-stationary covariance in each region. The new method helps evaluate 
differentially methylated regions (DMRs), and is shown to have more power compared to alternatives. I will 
discuss challenges and ideas in adapting this framework for fMRI spatial signal detection. 
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Volcano plots are used to select the most interesting discoveries when too many discoveries remain after 
application of Benjamini–Hochberg’s procedure (BH). The volcano plot suggests a double filtering procedure 
that selects features with both small adjusted P-value and large estimated effect size. Despite its popularity, 
this type of selection overlooks the fact that BH does not guarantee error control over filtered subsets of 
discoveries. Therefore the selected subset of features may include an inf lated number of false discoveries. 
Results: In this paper, we illustrate the substantially 

inf lated type I error rate of volcano plot selection with simulation experiments and RNA-seq data. In 
particular, we show that the feature with the largest estimated effect is a very likely false positive result. Next, 
we investigate two alternative approaches for multiple testing with double filtering that do not inflate the false 
discovery rate. Our procedure is implemented in an interactive web application and is publicly available 
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Genome-wide association studies aim to identify correlations between genetic variants and a trait. Standard

approaches focus primarily on single-nucleotide polymorphisms or short indels, and are thus not well suited

to accessory genomes, translocations, meta-genomes or repeated regions. More recent methods rely on k-

mers, i.e., substrings of length k. Variants defined as the presence of k-mers within a biological sequence

capture a broader category of genetic variation.

However, k-mers may not be expressive enough to represent polymorphic regions, whose presence is then

diluted across several k-mers representing all possible versions of the region. A more flexible alternative is to

use probabilistic sequence motifs. These motifs summarize several close k-mers by modelling the presence

of a mixture of nucleotides at each site.

To quantify the presence of such a motif and a given sequence, we compute its average activation across

each sequence in the panel. Our objective is then to find motifs whose activation is significantly associated

with a given phenotypic trait.  This task is made difficult  by the fact  that there is an infinite number of

possible motifs, since the nucleotide proportions at each site are continuous.

In the present work, we first develop a stable step-wise procedure to select a small number of sequence

motifs associated with a trait.  We then take advantage of recent  advances in post-selection inference to

produce a well-calibrated testing procedure for the association between the selected motifs and the trait,

while accounting for our selection procedure.

We also draw a formal link between our procedure and convolutional neural networks (CNNs) for biological

sequences, which are shown to define a particular association score. Our procedure could therefore be used

to perform statistical inference on the filters of a one-layer CNN.
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Testing for a di↵erence in means between two groups is fundamental to answering research questions
across virtually every scientific area. Classical tests like the t-test control the Type I error rate when the
groups are defined a priori. However, when the groups are instead defined via a clustering algorithm,
then applying a classical test for a di↵erence in means between the groups yields an extremely inflated
Type I error rate. This has serious implications for analyses in single cell data science, where it is
common practice to define putative cell types via a clustering algorithm, then use a classical test
for di↵erential expression analysis between the clusters. Notably, this problem persists even if two
separate and independent data sets are used to define the groups and to test for a di↵erence in their
means. In this talk, we propose a selective inference approach to test for a di↵erence in means between
two clusters obtained from any clustering method. Our procedure controls the selective Type I error
rate by accounting for the fact that the null hypothesis was generated from the data. We describe how
to e�ciently compute exact p-values for clusters obtained using agglomerative hierarchical clustering
with many commonly used linkages. We apply our method to simulated data and to single-cell RNA-
seq data.
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One of the most pressing challenges in genomic medicine is to understand the impact of genomic 
variation in health and disease. Large-scale interrogation of the human genome uncovered 
hundreds of thousands of disease-associated loci. However, the identification of variants of 
clinical relevance remains challenging, which hinders the exploitation of this information in 
clinical practice and drug R&D. Bioinformatic tools and resources that enable the automation of 
every possible step in this process are crucial.  

DisGeNET is a knowledge platform that aggregates and standardizes data about disease 
associated genes and variants from multiple authoritative sources, complemented with the most 
recent findings extracted from the scientific literature by text mining. Due to its ample coverage 
of the disease spectrum, it can be applied to complex as well as rare diseases. The current release 
includes more than 30,000 diseases & traits, 21,000 genes and 195,000 variants. These data are 
enriched with information from other resources and with different scores and metrics to enable 
searching, filtering and prioritizing the data.  

The DisGeNET suite of tools facilitates data exploration and analysis by different types of users 
and supports the development of bioinformatic workflows and pipelines enabling automation and 
reproducibility of the analyses. DisGeNET is an ELIXIR Recommended Interoperability 
Resource supporting a variety of applications in genomic medicine and drug R&D, including rare 
disease diagnosis, interpretation of GWAs results and prioritization of drug targets.  
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1. InWrodXcWion
In the Life Sciences landscape, bioinformatics core facilities play a key role for many scientific

communities, by providing software and reference data in a computational environment tailored for
high-throughput computing. They have to handle huge amounts of data generated by scientists in the
-omics era, which require an ever-increasing storage and computation capacity.

Bioinformatics platforms also play a pivotal role in the life cycle of scientific data. They are the
places where raw data are analyzed and integrated before being made available to the community by
deposition in international databases.

In order to help scientists to adopt best practices in data management1, OpenLink has been
selected during the “ANR Flash Données Ouvertes´. This project, starting in early 2020 at IGBMC,
relies on its IT department, imaging center as well as three research teams, to create a web application
that will enable the establishment of a virtual link between data and metadata scattered over multiple
management tools and to bring together good practices.

2. Openlink,  an inWeroperable neWZork of daWa managemenW Wools
The web application Openlink will facilitate the transversal identification of projects and their

associated data, from the Data Management Plan, to the publication, through the LabGuru electronic
lab notebook and data processing tool such as OMERO. The aim is to streamline the transfer of data
from production to archiving, while automatically enriching data.

Transversal metadata can be managed using API (Application Programming Interface). API
allows users to submit several query parameters to a server in order to fetch or send data. So,
information retrieved with API provided by research tools can be used to support researchers in the
process of publishing their data.

3. ConclXsion
The aim of OpenLink projects is to set up dashboards and automatic procedures to support

researchers in data management and guide them towards the adoption of a FAIRð approach compatible
with the commitments made by the Ministry of Research in favour of open science.
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Reproducibility is an ongoing e↵ort in the bioinformatics community[1]. Open science helps toward
this goal with open access to the scientific literature, open data and open source research software. In
2018, more than 36% of yearly published papers were published under open access conditions[2]. In
biology and bioinformatics, the recent development of preprints has acted as a leverage towards open
access.

Raw data deposit in public international repositories of genomics and proteomics data is now well
established and enforced by most journal editorial policies. Availability of all-purpose data repositories
such as Zenodo or Figshare also fostered open data.

It is now important to establish good practices also for scientific software, going beyond the common
approach of depositing code in development platforms such as GitHub or GitLab, where long-term
preservation is not guaranteed.

This presentation aims to present to our community the Software Heritage (SWH) 1 archive[3]:
it collects, preserves, and makes available all source codes, from the one that ran on the Apollo 11
Guidance Computer to the source code of the Gromacs molecular dynamics engine, the Bowtie 2
genomics read aligner, the Cytoscape network visualization software... Software Heritage can also
archives smaller programs like the scripts commonly used in bioinformatics.

Software Heritage regularly collects source code from a growing list of code hosting platforms,
and provides a powerful “Save code now” functionality 2 that allows to trigger archival for any public
repository based on the Git, Mercurial or Subversion version control systems, free of charge. Any object
archived in Software Heritage is assigned an intrinsic persistent identifier 3 called the SWHID[4], that
can be independently verified.

We will present actionable recommendations for better referencing and indexing research source
code, including best practices for providing metadata files in the code repository (AUTHOR(s) file
with the list of authors, LICENSE file with the applicable license to the source code, README
file with the description of the software and other valuable information) and for making it citable 4,
including pointers to appropriate bibliographic styles[4].
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Notre équipe étudie une cascade de facteurs de transcription importants au cours du développement floral 

(ARF, LFY, MADS) chez Arabidopsis thaliana. Nous combinons des données génomiques, biochimiques et 
structurales pour comprendre la régulation des cibles de ces facteurs. Les données génomiques visent à 
caractériser la régulation des gènes, la liaison TF/ADN et les paysages chromatiniens et proviennent de 
techniques de type ChIP-seq, DNase-seq, DAP-seq (et même seq-DAP-seq). Les liaisons TF/ADN sont 
modélisées sous forme de PWM, TFFM et k-mer (1). Nous avons ainsi montré que 1) les facteurs ARF lient 
l’ADN sous forme de différentes configurations dont certaines seulement favorisent la régulation (2). 2) le 
domaine de tétramérisation présent chez les facteurs MADS favorise la liaison de tétramères sur des 
configurations particulières de sites de liaison (3, 4) 3) les différences entre la liaison in vivo et in vitro du 
facteur LFY mettent en évidence son rôle pionnier avec une faible sensibilité à la méthylation (5). 

L’ensemble de ces travaux illustrent comment l’usage de méthodes computationnelles et en particulier 
l’usage de différents modèles de liaison à l’ADN permettent de mieux comprendre le rôle clés des facteurs 
transcription floraux dans le contrôle des programmes d’expression géniques spécifiques à cette phase 
développementale.Pages must NOT be numbered. Final pagination will be set by the editors of the 
proceedings. 

The list of references is headed References, it should be placed at the end of your contribution. It should be 
in Times New Roman 10-point font. Please do not insert a page break before the list of references. For citations 
in the text, please use square brackets [1] and consecutive ordered numbers [2,3] in list of references. Please 
find below examples on how to format references corresponding to articles [1], books [2], book chapters and 
proceedings [3]. 
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Algorithms for ab initio or de novo motif discovery have been developed for 25 years. These algorithms were 
initially meant to study a handful of non-coding sequences upstream of genes, and predict binding of 
transcription factors (TF). These algorithms solely take as input a set of sequences, and detect exceptional 
motifs that are then considered as putative regulatory signals. These algorithms quickly became accessible to 
non-experts, thanks to the web interfaces developed by MEME [1] and Regulatory Sequences Analysis Tools 
(RSAT) [2,3].  

Initiated in 1998, RSAT (http: //www.rsat.eu/) is a complete suite to detect cis-regulatory elements in 
genomic sequences. RSAT functionalities include de novo motif discovery, analyses of motif quality, motif 
comparisons and clustering, motif scanning to predict transcription factor binding sites (TFBSs), detection and 
analysis of regulatory variants [4]. Over the last 20 years, the RSAT team has maintained uninterrupted service, 
while extending developments prompted by the advances in the field of regulatory genomics.  

A turning point 10 years ago was the quick adoption of ChIP-seq to study TF binding genome-wide. An 
important bottleneck for most existing tools was that the underlying algorithms were originally developed for 
a small set of input sequences, and could hardly treat the thousands of peaks produced by ChIP-seq 
experiments. We thus developed RSAT peak-motifs [5], motivated by the pressing need for a statistically 
reliable, time-efficient and user-friendly framework to analyze full datasets of ChIP-seq peaks. It has become 
the flagship tool of RSAT, along with its companion matrix-clustering tool [6]. This more recent tool enables 
to identifying clusters of similar motifs, and is very useful to regroup redundant motifs.  

Currently, many development of new tools for motif discovery are targeted towards using machine learning 
approaches. Although these methods yield impressive results, they are not adressing non-experts users who 
need to autonomously analyze their own datasets. In addition to expertise, these approaches have hardware 
requirements that are not available in many institutes. There is thus still a need among users for reliable motif 
discovery tools, accessible through a web interface. 

We are thus developing a new major version of peak-motifs. Novelties include input a BED file and 
automatically retrieve the corresponding FASTA sequences to analyze, removing low-complexity regions, an 
enhanced web form, and fully-revised report that takes advantage of recent web frameworks, to display all 
results as a dashboard [cf. poster n°76]. Current developments involve direct link to matrix-clustering, and a 
new way to rank motifs, with a metric based on central enrichment of each discovered motif within the peaks.  
Altogether, the six public RSAT servers jointly support >10 000 genomes from all kingdoms. The open-source 
code has been moved to GitHub in 2021 (https://github.com/rsa-tools). RSAT is well-documented and 
available through Web sites, SOAP/WSDL + REST web services, virtual machines and stand-alone programs.  
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Abstract

Transcription Factors (TFs) are key proteins regulating when and where genes are expressed through their 

interaction with the DNA at specific binding sites. Hence, it is critical to locate these TF-DNA interactions to
understand transcriptional regulation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) 

represents the most popular experimental assay to identify the genomic regions, so called ChIP-seq peaks, 
where TFs bind to DNA in vivo. Unfortunately, it has recurrently been shown that ChIP-seq experiments are 

prone to generate ChIP-seq artifacts, and delineating bona fide bound regions from experimental noise is 
critical to provide useful biological insights for this data. The ever-increasing number of publicly available 

ChIP-seq data sets provides an unprecedented opportunity to develop computational tools designed to infer 
the precise locations of the TFBSs within ChIP-seq peaks by combining both computational and 

experimental evidences of direct TF-DNA interactions. Recently, we have updated the JASPAR1 and 
UniBind2 resources to provide the community with high-quality models and maps of direct TF-DNA 

interactions across species. They represent fundamental resources for researchers analysing transcriptional 
regulation.

JASPAR (http://jaspar.genereg.net) is an open-access database of manually curated, non-redundant TF-

binding profiles essentially stored as position frequency matrices (PFMs) for TFs across multiple species in 
six taxonomic groups. The JASPAR database is amongst the most popular and longest maintained database 

for TF-binding profiles, and is a standard resource in the field. As of today, the CORE collection of the 2020 
release of JASPAR contains 1,646 high-quality non-redundant PFMs.

Taking advantage of the JASPAR PFMs, we recently processed ~10,000 public ChIP-seq datasets from nine 

species to provide high-quality TFBS predictions. The data was uniformly processed through our ChIP-eat 
software to specifically delineate direct TF-DNA interactions in ChIP-seq peaks and separate them from 

indirect or non-specific binding and ChIP-seq artifacts. Briefly, ChIP-eat combines both computational (high 
PWM score) and experimental (centrality to ChIP-seq peak summit) evidence to find high-confidence direct 

TF-DNA interactions in a ChIP-seq experiment-specific manner. After quality control, it culminated with the 
prediction of ~56 million TFBSs with experimental and computational evidence for direct TF-DNA 

interactions for 644 TFs in >1,000 cell lines and tissues. These TFBSs were used to predict >198,000 cis-
regulatory modules representing clusters of binding events in the corresponding genomes. The high-quality 

of the TFBSs was reinforced by their evolutionary conservation, enrichment at active cis-regulatory regions, 
and capacity to predict combinatorial binding of TFs. Further, we confirmed that the cell type and tissue 

specificity of enhancer activity was correlated with the number of TFs with binding sites predicted in these 
regions. All the data is provided to the community through the UniBind database that can be accessed 

through its web-interface (https://unibind.uio.no/), a dedicated RESTful API, and as genomic tracks. Finally, 
we provide an enrichment tool, available as a web-service and an R package, for users to find TFs with 

enriched TFBSs in a set of provided genomic regions. UniBind is the first resource of its kind, providing the 
largest collection of high-confidence direct TF-DNA interactions in nine species.
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Long regulatory elements (LREs), such as CpG islands, polydA:dT tracts or AU-rich ele- ments, are thought 
to play key roles in gene regulation but, as opposed to conventional binding sites of transcription factors, few 
methods have been proposed to formally and auto- matically characterize them. We present here a 
computational approach named DExTER (Domain Exploration To Explain gene Regulation) dedicated to the 
identification of candi- date LREs (cLREs) and apply it to the analysis of the genomes of P. falciparum and 
other eukaryotes. Our analyses show that all tested genomes contain several cLREs that are somewhat 
conserved along evolution, and that gene expression can be predicted with sur- prising accuracy on the basis 
of these long regions only. Regulation by cLREs exhibits very different behaviours depending on species and 
conditions. In P. falciparum and other Api- complexan organisms as well as in Dictyostelium discoideum, the 
process appears highly dynamic, with different cLREs involved at different phases of the life cycle. For 
multicellular organisms, the same cLREs are involved in all tissues, but a dynamic behavior is observed along 
embryonic development stages. In P. falciparum, whose genome is known to be strongly depleted of 
transcription factors, cLREs are predictive of expression with an accu- racy above 70%, and our analyses show 
that they are associated with both transcriptional and post-transcriptional regulation signals. Moreover, we 
assessed the biological relevance of one LRE discovered by DExTER in P. falciparum using an in vivo reporter 
assay. 
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Identifying cis-regulatory motifs controlling gene expression is an arduous challenge that is

actively explored to discover key genetic factors responsible for traits of agronomic interest. The

Preferentially Located Motif detection (PLMdetect) method was developed to identify over-repre-

sented motifs (PLMs) in promoters at a preferred distance from the transcription start site in the mo-

del plant Arabidopsis [1]. Here, we expanded the PLMdetect method to comprehensively analyze

de novo the promoters as well as the untranslated transcribed regions of Arabidopsis and the impor-

tant crop maize. We sought to determine how their differences in genome content and architecture

would be reflected in features of their PLMs in 5’- and 3’-proximal regions of each gene locus. We

have currently identified three groups of PLMs for each species in each targeted region. An assess-

ment of these PLMs using known plant transcription factor (TF) binding site (TFBS) data [2] re-

vealed that a subset of these PLMs (9.4% and 7.3% in Arabidopsis and maize, respectively) are pre-

viously characterized TFBSs (tPLMs), while the others represent novel and uncharacterized motifs

(uPLMs), not captured by the current collection of plant TFBSs. Positional analyses of the tPLMs

revealed positional preferences of TFBSs from several TF families as previously reported in Ara-

bidopsis [3]. Furthermore, GO term enrichment analyses showed that 15.3% of the uPLMs are able

to infer functional predictions which are not provided by tPLMs. In the near future, we will add

comparisons between the datasets obtained from each species. Additionally, the development of the

interactive PLMviewer website will provide the plant community with a valuable resource of PLM

datasets for exploitation to investigate user-specific sequences.
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Due to the limitation of individual techniques such as X-ray crystallography or cryo Electron Microscopy 
(cryoEM), studies of large macromolecular assemblies have often been tackled by using integrative structural 
biology approaches. The integrative structural determination uses as much of the relevant biochemical and 
biophysical data about a macromolecular complex as possible to generate three-dimensional structures, and 
exploits the mutual synergy and consistency of the datasets in such a way that the resulting model is more 
informative than the models generated by each individual dataset [1]. Integration of Chemical cross-linking 
combined with Mass-Spectrometry (XL-MS) and Electron Microscopy (EM) is a powerful strategy to 
determine the architecture of macromolecular complexes, especially when combined with X-ray 
crystallography of protein domains or homology modeling. The two methods provide orthogonal structural 
information.  XL-MS probes the proximity of residues, peptides or domains in macromolecular complexes 
[3,4].  EM instead allows visualization of entire particles such as cellular components and macromolecular 
complexes in a form of 2D images or 3D density maps [2]. We recently developed a Bayesian approach to 
model the structure of a macromolecular system by optimally combining cryo-EM data with and XL-MS. We 
use Bayesian inference to determine the optimal weight of cryoEM data in integrative structural modeling. 
The approach models the structure of the system while simultaneously and automatically quantifying the level 
of noise in the data. By accounting for both data noise and correlation, this approach enables an effective use 
of cryoEM density maps in integrative structural modeling. 
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Adding a structural dimension to the ever-accumulating omics data presents a grand challenge to the 
structural biology community. Integrative modelling predicts protein assemblies under the guidance of 
experimental data to alleviate this challenge. During the last decade, we have observed a substantial 
improvement in the field of integrative modelling. Though, the field is still being challenged by 
numerous large, heterogeneous, and dynamic machineries. During my talk, I will present our recent 
efforts in modelling the structure of such an assembly. In this work, upon joining forces of molecular 
dynamics and integrative modelling, we explore how a specific class of transcription factor, Sox, can 
recognize its cognate sequence on a compact nucleosome. Our approach proposes that the productive 
binding of Sox transcription factor depends on the localization of its cognate sequence on the 
nucleosome. It also reveals that the position-dependency emanates from the differential histone-DNA 
interactions encoded at distinct nucleosomal positions. These striking findings came as an outcome of 
multiple simulation cycles, which I will discuss in detail during my presentation. 
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The potential of deep learning has been recognized in structural bioinformatics for already some time, and 
became indisputable after the CASP13 (Critical Assessment of Structure Prediction) community-wide 
experiment in 2018. In CASP14, held in 2020, deep learning has boosted the field to unexpected levels 
reaching near-experimental accuracy. Its results demonstrate dramatic improvement in computing the three-
dimensional structure of proteins from amino acid sequence, with many models rivalling experimental 
structures. This success comes from advances transferred from several machine-learning areas, including 
computer vision and natural language processing. At the same time, the community has developed methods 
specifically designed to deal with protein sequences and structures, and their representations. Novel emerging 
approaches include (i) geometric learning, i.e. learning on non-regular representations such as graphs, 3D 
Voronoi tessellations, and point clouds; (ii) pre-trained protein language models leveraging attention; (iii) 
equivariant architectures preserving the symmetry of 3D space; (iv) use of big data, e.g. large meta-genome 
databases; (v) combining protein representations; (vi) and finally truly end-to-end architectures, i.e. single 
differentiable models starting from a sequence and returning a 3D structure. These observations suggest that 
deep learning approaches will also be effective for a range of related structural biology applications that I will 
discuss in this talk.Pages must NOT be numbered. Final pagination will be set by the editors of the proceedings. 
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1. Introduction 
Biomolecular complexes adopt continuous conformational changes to accomplish various biological 

functions. The determination of the full conformational landscape from single-particle cryo electron 
microscopy (cryo-EM) images of purified complexes (in vitro) is challenging but can provide insights into 
their working mechanisms. The cryo electron microscope can also be used for structural determination of 
macromolecules in cells (in situ), by cryo-electron tomography (cryo-ET). The potential of cryo-ET to 
provide macromolecular dynamics information is still largely unexploited. Conventional subtomogram 
analysis methods propose discrete rather than continuous solutions, via subtomogram classification and class 
averaging. We present two methods, for in vitro cryo-EM (HEMNMA) and in situ cryo-ET (HEMNMA-3D) 
analysis of continuous conformational variability, both based on normal mode analysis (NMA). Also, we 
show that such hybrid approaches can be combined with deep learning to speed up the data analysis. 

2. Methods 
HEMNMA is a single-particle cryo-EM method for analyzing continuous conformational variability of 

macromolecules, introduced in 2014 [1]. Its software is part of the open-source ContinuousFlex plugin of 
Scipion 2 and 3 [2]. HEMNMA combines image analysis, NMA, and dimension reduction to visualize the 
full conformational landscape in a low-dimensional (usually 2D or 3D) space, and allows obtaining 3D 
reconstructions and movies of molecular motions along desired directions in this space. HEMNMA-3D [3] 
is a method for continuous conformational variability analysis of macromolecules in cryo-ET 3D 
subtomograms. It combines subtomogram analysis, NMA, and dimension reduction to visualize the full 
conformational landscape in a low-dimensional space, and allows obtaining subtomogram averages and 
movies of molecular motions along desired directions in this space. HEMNMA-3D software is part of the 
ContinuousFlex plugin of Scipion 3. Both methods use a flexible 3D-reference (atomic structure or a density 
map) to match the conformation, orientation, and position of the molecule in each image (HEMNMA) or 
subtomogram (HEMNMA-3D), through elastic and rigid-body alignments, where the conformational 
parameters are the amplitudes of normal modes. Recently, we have combined HEMNMA with deep learning 
for faster conformational space determination [4].  In this approach, a deep learning network predicts the 
amplitudes of normal modes from a large set of images, based on the normal-mode amplitudes previously 
estimated by HEMNMA from a small set of images. This approach will later be extended to HEMNMA-3D. 
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Authors names: Patel  

The soaring volume of data generated by NGS and other omics technologies presents both opportunities and 
challenges. Scaling up computing infrastructure to address the increasing number of petabyte-scale omics 
datasets is costly in both hardware and human resources. The vital maintenance of security, privacy, and 
compliance is a non-trivial task which requires substantial investment and regular audits, while discrete silos 
of data inhibit collaboration and easy data sharing, slowing the pace of innovation. Building and deploying 
new workflows can involve navigating many systems, tools, and technologies, often leading to inefficiencies. 
As a result, successfully deriving novel insights from these data sets can be prohibitive. 
Illumina Connected Analytics (ICA) is designed to eliminate many of these data challenges - empowering 
users to do more with their data. This talk will focus on the ICA cloud-based solution to managing population 
scale data sets and workloads without limitations. Data and tools can be accessed using the graphical user 
interface (GUI), or programmatically via the APIs and command-line interface (CLI). ICA breaks down data 
silos by fostering global collaboration and sharing of data, tools, and workflows amongst users. ICA takes care 
of the details so users can maintain a secure, compliant, and private data environment with minimal effort. 
Key features of ICA include audit trails/logs, access controls, and multi-factor authentication. Users can 
streamline development of new pipelines with support for custom, shared, and pre-packaged tools, including 
Illumina's DRAGEN bioinformatics pipelines. ICA frees up bioinformaticians and data scientists to focus more 
time and energy on building new tools to explore the data, and less time on routine, cumbersome tasks which 
can be automated or made accessible for end users.  
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Genopole, the cradle of genomics in France, is still involving in this discipline but the field has changed. The 
current challenges in genomics have shifted to computational challenges. To keep pace with this evolution, 
Genopole is shifting its strengths and missions from genomics to computational genomics, with the ambition 
to build a new branch at a national level. 
Genopole's ambition is based on the biocluster model, which brings together the strengths of the business 
world, academic research and training on a single site. The Genopole ecosystem covers all aspects from 
fundamental genomics (genomics, epigenomics, etc.) to medical, industrial (metabolic genomics, synthetic 
biology, etc.) and environmental (metagenomics, etc.) applications. The French computational genomics 
community needs to organize and structure itself in order to take advantage of the potential of genomics in all 
application areas, to stay on the international race and to build its own pipeline in terms of genomic data 
processing. Genopole is moving step by step to this direction in conjunction with national and European 
partners. 
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